login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349220
Decimal expansion of Sum_{k>=1} (-1)^k * log(k) / k^3.
3
0, 5, 9, 7, 0, 5, 9, 0, 6, 1, 6, 0, 1, 9, 5, 3, 5, 8, 3, 6, 3, 4, 2, 9, 2, 6, 6, 2, 8, 7, 9, 2, 5, 6, 7, 8, 3, 1, 6, 9, 2, 6, 8, 7, 3, 1, 5, 6, 5, 1, 5, 9, 6, 9, 2, 3, 3, 2, 5, 1, 1, 7, 8, 0, 5, 2, 4, 0, 1, 0, 0, 5, 6, 0, 1, 1, 6, 2, 2, 8, 0, 2, 3, 4, 6, 3, 7, 0, 2, 4, 9, 7, 1, 6, 9, 2, 8, 9, 5, 1, 8, 7, 0, 8, 3, 1, 8, 1, 9, 6, 7, 0, 1, 0, 8, 2, 1, 6, 1, 1, 2
OFFSET
0,2
COMMENTS
First derivative of the Dirichlet eta function at 3.
LINKS
Eric Weisstein's World of Mathematics, Dirichlet Eta Function
FORMULA
Equals (log(2) * zeta(3) + 3 * zeta'(3)) / 4.
EXAMPLE
0.0597059061601953583634292662879256783169268731565...
MATHEMATICA
Flatten[{0, RealDigits[(Log[2] Zeta[3] + 3 Zeta'[3])/4, 10, 120][[1]]}]
PROG
(PARI) sumalt(k=1, (-1)^k * log(k) / k^3) \\ Michel Marcus, Nov 11 2021
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Ilya Gutkovskiy, Nov 11 2021
STATUS
approved