login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091812
Decimal expansion of Sum_{k>=1} (-1)^k*log(k)/k.
13
1, 5, 9, 8, 6, 8, 9, 0, 3, 7, 4, 2, 4, 3, 0, 9, 7, 1, 7, 5, 6, 9, 4, 7, 8, 7, 0, 3, 2, 4, 9, 1, 6, 5, 7, 0, 4, 9, 6, 2, 2, 2, 0, 2, 3, 7, 5, 6, 4, 5, 8, 7, 4, 2, 6, 7, 0, 8, 2, 4, 5, 2, 9, 6, 3, 9, 6, 5, 7, 0, 0, 2, 1, 8, 4, 0, 2, 9, 0, 0, 4, 6, 5, 9, 5, 5, 5, 0, 3, 4, 0, 3, 2, 0, 4, 6, 1, 8, 8, 2, 9, 4, 6, 3
OFFSET
0,2
COMMENTS
Equal to the derivative eta'(1) of the Dirichlet eta function eta(s) = Sum_{k>=1} (-1)^(k-1)/k^s = (1 - 2^(1-s))*zeta(s) at s = 1. - Jonathan Sondow, Dec 28 2011
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.21, p. 168.
A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1, Overseas Publishers Association, Amsterdam, 1986, p. 746, section 5.5.1, formula 3.
LINKS
Henri Cohen, Fernando Rodriguez Villegas, and Don Zagier, Convergence Acceleration of Alternating Series, Exp. Math. 9 (1) (2000) 3-12.
Eric Weisstein's World of Mathematics, Dirichlet Eta Function.
FORMULA
Equals gamma*log(2) - log(2)^2/2.
Equals -Sum_{k>=1} psi(k)/(k*2^k), where psi(x) is the digamma function. - Amiram Eldar, Sep 12 2022
EXAMPLE
0.15986890374243097175694787032491657049622202375645874267082452963965...
MAPLE
gamma*log(2)-log(2)^2/2 ; evalf(%) ; # R. J. Mathar, Jun 10 2024
MATHEMATICA
RealDigits[EulerGamma*Log[2] - Log[2]^2/2, 10, 100][[1]] (* Amiram Eldar, Sep 12 2022 *)
RealDigits[Limit[Derivative[1][DirichletEta][x], x -> 1], 10, 110][[1]] (* Eric W. Weisstein, Jan 08 2024 *)
PROG
(PARI) Euler*log(2)-log(2)^2/2 \\ Charles R Greathouse IV, Mar 28 2012
CROSSREFS
KEYWORD
cons,nonn,changed
AUTHOR
Benoit Cloitre, Mar 07 2004
STATUS
approved