login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Sum_{k>=1} (-1)^k*log(k)/k.
13

%I #62 Dec 07 2024 10:03:22

%S 1,5,9,8,6,8,9,0,3,7,4,2,4,3,0,9,7,1,7,5,6,9,4,7,8,7,0,3,2,4,9,1,6,5,

%T 7,0,4,9,6,2,2,2,0,2,3,7,5,6,4,5,8,7,4,2,6,7,0,8,2,4,5,2,9,6,3,9,6,5,

%U 7,0,0,2,1,8,4,0,2,9,0,0,4,6,5,9,5,5,5,0,3,4,0,3,2,0,4,6,1,8,8,2,9,4,6,3

%N Decimal expansion of Sum_{k>=1} (-1)^k*log(k)/k.

%C Equal to the derivative eta'(1) of the Dirichlet eta function eta(s) = Sum_{k>=1} (-1)^(k-1)/k^s = (1 - 2^(1-s))*zeta(s) at s = 1. - _Jonathan Sondow_, Dec 28 2011

%D Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.21, p. 168.

%D A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1, Overseas Publishers Association, Amsterdam, 1986, p. 746, section 5.5.1, formula 3.

%H Henri Cohen, Fernando Rodriguez Villegas, and Don Zagier, <a href="https://dx.doi.org/10.1080/10586458.2000.10504632">Convergence Acceleration of Alternating Series</a>, Exp. Math. 9 (1) (2000) 3-12.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DirichletEtaFunction.html">Dirichlet Eta Function</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Dirichlet_eta_function">Dirichlet eta function</a>.

%F Equals gamma*log(2) - log(2)^2/2.

%F Equals -Sum_{k>=1} psi(k)/(k*2^k), where psi(x) is the digamma function. - _Amiram Eldar_, Sep 12 2022

%e 0.15986890374243097175694787032491657049622202375645874267082452963965...

%p gamma*log(2)-log(2)^2/2 ; evalf(%) ; # _R. J. Mathar_, Jun 10 2024

%t RealDigits[EulerGamma*Log[2] - Log[2]^2/2, 10, 100][[1]] (* _Amiram Eldar_, Sep 12 2022 *)

%t RealDigits[Limit[Derivative[1][DirichletEta][x], x -> 1], 10, 110][[1]] (* _Eric W. Weisstein_, Jan 08 2024 *)

%o (PARI) Euler*log(2)-log(2)^2/2 \\ _Charles R Greathouse IV_, Mar 28 2012

%Y Cf. A001620, A099769, A265162, A354295.

%K cons,nonn

%O 0,2

%A _Benoit Cloitre_, Mar 07 2004