This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A210593 Decimal expansion of the series limit of sum_{k>=1} (-1)^k*log(k)/k^2. 0
 1, 0, 1, 3, 1, 6, 5, 7, 8, 1, 6, 3, 5, 0, 4, 5, 0, 1, 8, 8, 6, 0, 0, 2, 8, 8, 2, 2, 1, 2, 2, 4, 2, 1, 8, 3, 6, 5, 9, 3, 8, 4, 7, 7, 6, 3, 7, 4, 9, 1, 1, 1, 6, 3, 3, 3, 4, 2, 9, 4, 2, 4, 7, 1, 9, 6, 2, 0, 4, 5, 3, 0, 9, 2, 0, 5, 4, 3, 6, 3, 2, 4, 9, 5, 3, 1, 7, 8, 0, 1, 2, 5, 3, 1, 9, 0, 3, 5, 6, 3, 9, 8, 2, 3, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS First derivative of the Dirichlet eta-function eta(s) at s=2. Phatisena et al. misspell "Euler" and provide the wrong sign and an invalid 7th digit. LINKS S. Phatisena, R. E. Amritkar, P. V. Panat, Exchange and correlation potential for a two-dimensional electron gas at finite temperatures, Phys. Rev. A 34 (1986) 5070. Wikipedia, Dirichlet eta function FORMULA Decimal expansion of (log(2)*zeta(2)+zeta'(2)) / 2. EXAMPLE 0.101316578163504501886002882212242183659384776374911163334294247196204... MAPLE 1/2*log(2)*Zeta(2)+Zeta(1, 2)/2 ; evalf(%) ; MATHEMATICA N[(1/12)*Pi^2*(Log[4] - 12*Log[Glaisher] + Log[Pi] + EulerGamma), 105] // RealDigits // First (* Jean-François Alcover, Feb 05 2013 *) PROG (PARI) (log(2)*zeta(2)+zeta'(2))/2 \\ Charles R Greathouse IV, Mar 28 2012 CROSSREFS Cf. A073002, A013661, A002162. Sequence in context: A210602 A210801 A153091 * A179069 A235706 A124847 Adjacent sequences:  A210590 A210591 A210592 * A210594 A210595 A210596 KEYWORD nonn,cons AUTHOR R. J. Mathar, Mar 23 2012 EXTENSIONS Extended to 105 digits by Jean-François Alcover, Feb 05 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 01:20 EST 2018. Contains 318141 sequences. (Running on oeis4.)