login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375506
Decimal expansion of the first derivative of the Dirichlet eta-function eta(s) at s=3/2.
1
1, 2, 8, 6, 7, 4, 7, 5, 0, 8, 3, 0, 3, 5, 7, 1, 9, 0, 0, 9, 5, 9, 5, 2, 9, 2, 9, 9, 1, 0, 3, 0, 1, 3, 7, 5, 7, 1, 1, 4, 2, 1, 8, 5, 3, 5, 4, 2, 4, 9, 3, 2, 2, 2, 8, 6, 2, 0, 9, 0, 4, 7, 2, 3, 7, 7, 4, 0, 7, 0, 1, 6, 5, 6, 0, 8, 8, 8, 7, 6, 8, 2, 8, 1, 1, 8, 9, 4, 1, 3, 2, 0, 9, 2, 6, 3
OFFSET
0,2
FORMULA
Equals log(2)*zeta(3/2)/sqrt(2) +(1-1/sqrt(2))*zeta'(3/2) = Sum_{i>=1} (-1)^i*log(i)/i^(3/2).
EXAMPLE
0.12867475083035719009595292991030137571142185354249...
MAPLE
s :=3/2 ; 2^(1-s)*log(2)*Zeta(s)+(1-2^(1-s))*Zeta(1, s) ; evalf(%) ;
MATHEMATICA
RealDigits[DirichletEta'[3/2], 10, 120][[1]] (* Amiram Eldar, Aug 19 2024 *)
CROSSREFS
Cf. A091812 (at s=1), A210593 (at s=2), A349220 (at s=3), A078434 (zeta(3/2)), A375503 (zeta'(3/2)).
Sequence in context: A368645 A019914 A065473 * A054029 A197589 A124356
KEYWORD
nonn,cons
AUTHOR
R. J. Mathar, Aug 18 2024
STATUS
approved