login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A197589 Decimal expansion of least x>0 satisfying f(x)=m/2, where m is the maximal value of the function f(x)=cos(x)^2+sin(2x)^2. 4
1, 1, 2, 8, 6, 8, 0, 1, 9, 4, 3, 3, 7, 7, 5, 2, 8, 4, 4, 7, 0, 0, 6, 0, 4, 9, 8, 4, 5, 3, 3, 4, 6, 2, 9, 4, 7, 2, 6, 0, 9, 5, 3, 6, 4, 3, 8, 6, 6, 8, 3, 8, 6, 0, 6, 0, 5, 8, 6, 9, 2, 8, 2, 5, 2, 1, 7, 5, 0, 0, 0, 9, 6, 6, 8, 2, 8, 9, 4, 5, 0, 2, 1, 9, 3, 6, 8, 6, 5, 1, 3, 0, 4, 5, 7, 2, 4, 8, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
For a discussion and guide to related sequences, see A197739.
LINKS
EXAMPLE
x=1.12868019433775284470060498453346294726...
MATHEMATICA
b = 1; c = 2;
f[x_] := Cos[b*x]^2; g[x_] := Sin[c*x]^2; s[x_] := f[x] + g[x];
r = x /. FindRoot[b*Sin[2 b*x] == c*Sin[2 c*x], {x, .65, .66}, WorkingPrecision -> 110]
RealDigits[r] (* A195700, arcsin(sqrt(3/8)) *)
m = s[r]
RealDigits[m]
Rationalize[{m, m/2, m/3, 2 m/3, m/4, 3 m/4}]
Plot[{b*Sin[2 b*x], c*Sin[2 c*x]}, {x, 0, Pi}]
d = m/2; t = x /. FindRoot[s[x] == d, {x, 1.1, 1.2}, WorkingPrecision -> 110]
RealDigits[t] (* A197589 *)
Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
d = m/3; t = x /. FindRoot[s[x] == d, {x, 1.1, 1.2}, WorkingPrecision -> 110]
RealDigits[t] (* A197591 *)
Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
d = 1; t = x /. FindRoot[s[x] == d, {x, 1.1, 1.2}, WorkingPrecision -> 110]
RealDigits[t] (* A019670, pi/3 *)
Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
d = 1/2; t = x /. FindRoot[s[x] == d, {x, 1.1, 1.2}, WorkingPrecision -> 110]
RealDigits[t] (* A197592 *)
Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
CROSSREFS
Sequence in context: A019914 A065473 A054029 * A124356 A277249 A320262
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 18 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 22 22:22 EDT 2024. Contains 374544 sequences. (Running on oeis4.)