This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A197739 Decimal expansion of least x>0 having sin(2x)=3*sin(6x). 29
 4, 7, 7, 6, 5, 8, 3, 0, 9, 0, 6, 2, 2, 5, 4, 6, 3, 9, 0, 8, 1, 9, 2, 8, 5, 5, 1, 2, 5, 7, 8, 7, 8, 8, 7, 7, 1, 2, 1, 7, 0, 7, 3, 4, 7, 5, 0, 5, 0, 0, 2, 7, 4, 5, 4, 7, 9, 8, 4, 9, 0, 6, 4, 6, 6, 0, 9, 5, 6, 0, 2, 2, 9, 5, 1, 9, 8, 8, 2, 2, 7, 6, 9, 3, 6, 9, 5, 8, 0, 1, 2, 9, 2, 8, 1, 4, 0, 3, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This constant is the least x>0 for which the function f(x)=(sin(x))^2+(cos(3x))^2 has its maximal value.  Least positive solutions of the equations f(x)=m/2, f(x)=m/3, f(x)=1, and f(x)=1/2 are given by sequences shown in the guide below. In general, suppose that b and c are distinct positive real numbers.  Let f(x)=(sin(bx))^2+cos((cx))^2.  The extrema of f are the solutions of b*sin(2bx)=c*sin(2cx). In the following guide, constants x given by the sequences (or explicit number) listed for each b,c are, in this order: (1) least x>0 such that f(x)=(its maximum, m) (2) m, the maximum of f (3) least x>0 having f(x)=m/2 (4) least x>0 having f(x)=m/3 (5) least x>0 having f(x)=1 (6) least x>0 having f(x)=1/2 ... (b,c)=(1,2):  A195700, x=25/16, A197589, A197591, (b,c)=(1,3):  A197739, A197588, A197590, A197755, (b,c)=(1,4):  A197758, A197759, A197760, A197761,   A019692 (x=pi/5), A003881 (b,c)=(1,pi): A197821, A197822, A197823, A197824, (b,c)=(1,2*pi): A197827, A197828, A197829, A197830, (b,c)=(1,3*pi): A197833, A197834, A197835, A197836, LINKS EXAMPLE x=0.47765830906225463908192855125787887712170734750500... MATHEMATICA b = 1; c = 3; f[x_] := Cos[b*x]^2; g[x_] := Sin[c*x]^2; s[x_] := f[x] + g[x]; r = x /. FindRoot[b*Sin[2 b*x] == c*Sin[2 c*x], {x, .47, .48}, WorkingPrecision -> 110] RealDigits[r]  (* A197739 *) m = s[r] RealDigits[m]  (* A197588 *) Plot[{b*Sin[2 b*x], c*Sin[2 c*x]}, {x, 0, Pi}] d = m/2; t = x /. FindRoot[s[x] == d, {x, 0.7, 0.8}, WorkingPrecision -> 110] RealDigits[t]  (* A197590 *) Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}] d = m/3; t = x /. FindRoot[s[x] == d, {x, 0.8, 0.9}, WorkingPrecision -> 110] RealDigits[t]  (* A197755 *) Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}] d = 1; t = x /. FindRoot[s[x] == d, {x, 0.7, 0.8}, WorkingPrecision -> 110] RealDigits[t]  (* A003881 *) Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}] d = 1/2; t = x /. FindRoot[s[x] == d, {x, .9, .93}, WorkingPrecision -> 110] RealDigits[t]  (* A197488 *) Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}] RealDigits[ ArcTan[ Sqrt[ 2-Sqrt[3] ] ], 10, 99] // First (* Jean-François Alcover, Feb 27 2013 *) CROSSREFS Cf. A197739, A197588. Sequence in context: A275639 A201940 A075113 * A277577 A011222 A157298 Adjacent sequences:  A197736 A197737 A197738 * A197740 A197741 A197742 KEYWORD nonn,cons AUTHOR Clark Kimberling, Oct 18 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.