OFFSET
0,2
COMMENTS
For a discussion and guide to related sequences, see A197739.
EXAMPLE
x=0.16484394670494001260057035619088988930523218...
MATHEMATICA
b = 1; c = 3*Pi;
f[x_] := Cos[b*x]^2; g[x_] := Sin[c*x]^2; s[x_] := f[x] + g[x];
r = x /. FindRoot[b*Sin[2 b*x] == c*Sin[2 c*x], {x, .16, .17}, WorkingPrecision -> 110]
RealDigits[r](* A197833 *)
m = s[r]
RealDigits[m](* A197834 *)
Plot[{b*Sin[2 b*x], c*Sin[2 c*x]}, {x, 0, .6}]
d = m/2; t = x /. FindRoot[s[x] == d, {x, .4, .42}, WorkingPrecision -> 110]
RealDigits[t] (* A197835 *)
Plot[{s[x], d}, {x, 0, .7}, AxesOrigin -> {0, 0}]
d = m/3; t = x /. FindRoot[s[x] == d, {x, .91, .92}, WorkingPrecision -> 110]
RealDigits[t](* A197836 *)
Plot[{s[x], d}, {x, 0, Pi/2}, AxesOrigin -> {0, 0}]
d = 1; t = x /. FindRoot[s[x] == d, {x, .4, .5}, WorkingPrecision -> 110]
RealDigits[t] (* A197837 *)
Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
d = 1/2; t = x /. FindRoot[s[x] == d, {x, .95, .96}, WorkingPrecision -> 110]
RealDigits[t] (* A197838 *)
Plot[{s[x], d}, {x, 0, 1}, AxesOrigin -> {0, 0}]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 19 2011
STATUS
approved