|
|
A197736
|
|
Decimal expansion of 4*Pi/(1 + Pi).
|
|
2
|
|
|
3, 0, 3, 4, 1, 8, 7, 9, 7, 1, 9, 7, 9, 1, 0, 4, 5, 8, 1, 3, 7, 7, 7, 2, 2, 7, 5, 6, 1, 7, 9, 5, 7, 1, 4, 5, 6, 5, 5, 3, 7, 0, 5, 4, 6, 2, 5, 6, 2, 1, 2, 3, 9, 8, 6, 6, 7, 5, 9, 5, 2, 8, 5, 5, 1, 3, 0, 1, 9, 2, 5, 4, 8, 4, 0, 3, 8, 2, 9, 5, 0, 5, 2, 8, 2, 5, 3, 2, 6, 9, 6, 0, 6, 1, 4, 2, 3, 0, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Least x > 0 such that sin(b*x) = cos(c*x) (and also sin(c*x) = cos(b*x)), where b=1/8 and c=Pi/8; see the Mathematica program for a graph and A197682 for a discussion and guide to related sequences.
|
|
LINKS
|
Table of n, a(n) for n=1..99.
Index entries for transcendental numbers
|
|
EXAMPLE
|
3.03418797197910458137772275617957145655370...
|
|
MATHEMATICA
|
b = 1/8; c = Pi/8;
t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, 3, 4}]
N[Pi/(2*b + 2*c), 110]
RealDigits[%] (* A197736 *)
Simplify[Pi/(2*b + 2*c)]
Plot[{Sin[b*x], Cos[c*x]}, {x, 0, 8*Pi}]
|
|
CROSSREFS
|
Cf. A197682.
Sequence in context: A281269 A210877 A127753 * A073367 A222769 A111862
Adjacent sequences: A197733 A197734 A197735 * A197737 A197738 A197739
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
Clark Kimberling, Oct 17 2011
|
|
STATUS
|
approved
|
|
|
|