|
|
A197738
|
|
Decimal expansion of x>0 having x^2+x=cos(x).
|
|
3
|
|
|
5, 5, 0, 0, 0, 9, 3, 4, 9, 9, 2, 7, 2, 6, 1, 5, 6, 6, 6, 6, 4, 9, 5, 3, 6, 1, 9, 4, 7, 1, 7, 2, 9, 2, 6, 1, 1, 6, 7, 2, 8, 5, 0, 9, 2, 4, 3, 5, 7, 9, 3, 7, 8, 4, 5, 7, 0, 9, 3, 9, 2, 2, 0, 4, 2, 5, 2, 6, 0, 4, 4, 5, 2, 5, 2, 4, 4, 5, 3, 3, 2, 8, 5, 3, 9, 2, 4, 4, 5, 4, 3, 1, 6, 4, 9, 6, 4, 4, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
For a discussion and guide to related sequences, see A197737.
|
|
LINKS
|
Table of n, a(n) for n=0..98.
|
|
EXAMPLE
|
negative: -1.25115183522076481159287006878816185994...
positive: 0.55000934992726156666495361947172926116...
|
|
MATHEMATICA
|
a = 1; b = 1; c = 1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.26, -1.25}, WorkingPrecision -> 110]
RealDigits[r1] (* A197737 *)
r1 = x /. FindRoot[f[x] == g[x], {x, .55, .551}, WorkingPrecision -> 110]
RealDigits[r1] (* A197738 *)
|
|
CROSSREFS
|
Cf. A197737.
Sequence in context: A043299 A144776 A065937 * A189232 A247667 A115144
Adjacent sequences: A197735 A197736 A197737 * A197739 A197740 A197741
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
Clark Kimberling, Oct 20 2011
|
|
STATUS
|
approved
|
|
|
|