login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247667
Decimal expansion of the coefficient c_m in c_m*log(N), the asymptotic mean number of factors in a random factorization of n <= N.
9
5, 5, 0, 0, 1, 0, 0, 0, 5, 4, 1, 3, 1, 5, 4, 4, 9, 1, 8, 3, 3, 0, 5, 8, 1, 2, 6, 7, 0, 2, 2, 2, 2, 1, 9, 6, 4, 6, 1, 1, 6, 8, 2, 2, 7, 1, 0, 2, 7, 1, 4, 0, 4, 0, 9, 8, 8, 8, 3, 9, 6, 5, 8, 5, 8, 9, 2, 9, 0, 5, 3, 0, 6, 6, 6, 6, 0, 5, 6, 4, 8, 5, 9, 5, 1, 1, 8, 7, 2, 0, 6, 5, 2, 3, 5, 3, 4, 6, 6, 5, 4
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.5. Kalmár’s Composition Constant, p. 293.
FORMULA
c_m = -1/zeta'(rho), where rho = 1.728647... is A107311, the real solution to zeta(rho) = 2.
Residue_{s = rho} 1/(2 - Zeta(s)). - Vaclav Kotesovec, Nov 04 2018
EXAMPLE
0.55001000541315449183305812670222219646116822710271404...
MATHEMATICA
digits = 101; rho = x /. FindRoot[Zeta[x] == 2, {x, 2}, WorkingPrecision -> digits+5]; cm = -1/Zeta'[rho]; RealDigits[cm, 10, digits] // First
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved