login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129373
G.f. satisfies: A(x) = (1+x) * A(x^2)*A(x^3)*A(x^4)*...*A(x^n)*...
14
1, 1, 1, 2, 3, 4, 7, 9, 13, 19, 26, 34, 52, 67, 89, 123, 166, 214, 295, 380, 501, 660, 858, 1098, 1461, 1858, 2384, 3072, 3940, 4975, 6410, 8070, 10234, 12946, 16322, 20412, 25848, 32201, 40261, 50287, 62728, 77681, 96885, 119673, 148197, 183108, 225974
OFFSET
0,4
LINKS
FORMULA
G.f.: A(x) = Product_{n>=1} (1 + x^n)^A074206(n) where A074206(n) equals the number of ordered factorizations of n.
a(n) ~ exp((1 + 1/r) * (-(1 - 2^(-r)) * Gamma(1+r) * Zeta(1+r) / Zeta'(r))^(1/(1+r)) * n^(r/(1+r))) * (-(1 - 2^(-r)) * Gamma(1+r) * Zeta(1+r) / Zeta'(r))^(1/(2 + 2*r)) / (2^(1/10) * sqrt(Pi) * sqrt(1+r) * n^((2+r)/(2 + 2*r))), where r = A107311 = 1.7286472389981836181351... is the root of the equation Zeta(r) = 2, Zeta'(r) = -1/A247667. - Vaclav Kotesovec, Nov 04 2018
PROG
(PARI) {a(n)=local(A=1+x); for(i=2, n, A=(1+x)*prod(n=2, i, subst(A, x, x^n+x*O(x^i)))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 12 2007
STATUS
approved