

A241131


Number of partitions p of n such that (maximal multiplicity over the parts of p) = number of 1s in p.


21



0, 1, 1, 2, 3, 4, 7, 9, 13, 18, 26, 32, 47, 60, 79, 104, 137, 173, 227, 285, 365, 461, 583, 724, 912, 1129, 1403, 1729, 2137, 2611, 3211, 3906, 4765, 5777, 7010, 8450, 10213, 12263, 14738, 17637, 21113, 25158, 30008, 35638, 42333, 50130, 59346, 70035, 82663
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


LINKS



FORMULA

a(6) counts these 7 partitions: 51, 411, 321, 3111, 2211, 21111, 111111.


MATHEMATICA

z = 30; m[p_] := Max[Map[Length, Split[p]]]; Table[Count[IntegerPartitions[n], p_ /; m[p] == Count[p, 1]], {n, 0, z}]


CROSSREFS



KEYWORD

nonn,easy


AUTHOR



STATUS

approved



