|
|
A241131
|
|
Number of partitions p of n such that (maximal multiplicity over the parts of p) = number of 1s in p.
|
|
21
|
|
|
0, 1, 1, 2, 3, 4, 7, 9, 13, 18, 26, 32, 47, 60, 79, 104, 137, 173, 227, 285, 365, 461, 583, 724, 912, 1129, 1403, 1729, 2137, 2611, 3211, 3906, 4765, 5777, 7010, 8450, 10213, 12263, 14738, 17637, 21113, 25158, 30008, 35638, 42333, 50130, 59346, 70035, 82663
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
|
|
FORMULA
|
a(6) counts these 7 partitions: 51, 411, 321, 3111, 2211, 21111, 111111.
|
|
MATHEMATICA
|
z = 30; m[p_] := Max[Map[Length, Split[p]]]; Table[Count[IntegerPartitions[n], p_ /; m[p] == Count[p, 1]], {n, 0, z}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|