login
A241131
Number of partitions p of n such that (maximal multiplicity over the parts of p) = number of 1s in p.
22
0, 1, 1, 2, 3, 4, 7, 9, 13, 18, 26, 32, 47, 60, 79, 104, 137, 173, 227, 285, 365, 461, 583, 724, 912, 1129, 1403, 1729, 2137, 2611, 3211, 3906, 4765, 5777, 7010, 8450, 10213, 12263, 14738, 17637, 21113, 25158, 30008, 35638, 42333, 50130, 59346, 70035, 82663
OFFSET
0,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..2000 (first 301 terms from John Tyler Rascoe)
FORMULA
G.f.: Sum_{i>0} x^i * Product_{j>1} ((1 - x^(j*(i+1)))/(1 - x^j)). - John Tyler Rascoe, Mar 12 2024
EXAMPLE
a(6) counts these 7 partitions: 51, 411, 321, 3111, 2211, 21111, 111111.
MAPLE
b:= proc(n, i, m) option remember; `if`(i=1, `if`(n>=m, 1, 0),
add(b(n-i*j, i-1, max(j, m)), j=0..n/i))
end:
a:= n-> `if`(n=0, 0, b(n$2, 0)):
seq(a(n), n=0..48); # Alois P. Heinz, Mar 15 2024
MATHEMATICA
z = 30; m[p_] := Max[Map[Length, Split[p]]]; Table[Count[IntegerPartitions[n], p_ /; m[p] == Count[p, 1]], {n, 0, z}]
PROG
(PARI)
A_x(N)={my(x='x+O('x^N), g=sum(i=1, N, x^i*prod(j=2, N, (1-x^(j*(i+1)))/(1-x^j))));
concat([0], Vec(g))}
A_x(50) \\ John Tyler Rascoe, Mar 12 2024
CROSSREFS
Sequence in context: A188381 A005576 A339592 * A339397 A129373 A139078
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 24 2014
STATUS
approved