OFFSET
0,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..2000 (first 301 terms from John Tyler Rascoe)
FORMULA
G.f.: Sum_{i>0} x^i * Product_{j>1} ((1 - x^(j*(i+1)))/(1 - x^j)). - John Tyler Rascoe, Mar 12 2024
EXAMPLE
a(6) counts these 7 partitions: 51, 411, 321, 3111, 2211, 21111, 111111.
MAPLE
b:= proc(n, i, m) option remember; `if`(i=1, `if`(n>=m, 1, 0),
add(b(n-i*j, i-1, max(j, m)), j=0..n/i))
end:
a:= n-> `if`(n=0, 0, b(n$2, 0)):
seq(a(n), n=0..48); # Alois P. Heinz, Mar 15 2024
MATHEMATICA
z = 30; m[p_] := Max[Map[Length, Split[p]]]; Table[Count[IntegerPartitions[n], p_ /; m[p] == Count[p, 1]], {n, 0, z}]
PROG
(PARI)
A_x(N)={my(x='x+O('x^N), g=sum(i=1, N, x^i*prod(j=2, N, (1-x^(j*(i+1)))/(1-x^j))));
concat([0], Vec(g))}
A_x(50) \\ John Tyler Rascoe, Mar 12 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 24 2014
STATUS
approved