OFFSET
0,3
COMMENTS
Partial sums of A129370.
Partial row sums of A055461. - G. C. Greubel, Jan 31 2024
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000
Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1).
FORMULA
G.f.: x*(1+4*x+5*x^2+4*x^3)/((1-x)*(1-x^2)^3).
a(n) = Sum_{k = floor((n+1)/2)..n} k^2.
From R. J. Mathar, Apr 21 2010: (Start)
a(n) = a(n-1) +3*a(n-2) -3*a(n-3) -3*a(n-4) +3*a(n-5) +a(n-6) -a(n-7).
a(n) = 7*n^3/24 + 9*n^2/16 + 7*n/48 + (-1)^n*n*(n-1)/16. (End)
MATHEMATICA
Accumulate[Table[n^2-(n-1)^2 (1-(-1)^n)/8, {n, 0, 50}]] (* Harvey P. Dale, Oct 22 2011 *)
PROG
(Magma) [n*(14*n^2+27*n+7)/48 +(-1)^n*Binomial(n, 2)/8: n in [0..60]]; // G. C. Greubel, Jan 31 2024
(SageMath) [n*(14*n^2+27*n+7)/48 +(-1)^n*binomial(n, 2)/8 for n in range(61)] # G. C. Greubel, Jan 31 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 11 2007
STATUS
approved