|
|
A129371
|
|
a(n) = Sum_{k=0..floor(n/2)} (n-k)^2.
|
|
2
|
|
|
0, 1, 5, 13, 29, 50, 86, 126, 190, 255, 355, 451, 595, 728, 924, 1100, 1356, 1581, 1905, 2185, 2585, 2926, 3410, 3818, 4394, 4875, 5551, 6111, 6895, 7540, 8440, 9176, 10200, 11033, 12189, 13125, 14421, 15466, 16910, 18070
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x*(1+4*x+5*x^2+4*x^3)/((1-x)*(1-x^2)^3).
a(n) = Sum_{k = floor((n+1)/2)..n} k^2.
a(n) = a(n-1) +3*a(n-2) -3*a(n-3) -3*a(n-4) +3*a(n-5) +a(n-6) -a(n-7).
a(n) = 7*n^3/24+9*n^2/16+7*n/48+n*(-1)^n*(n-1)/16. (End)
|
|
MATHEMATICA
|
Accumulate[Table[n^2-(n-1)^2 (1-(-1)^n)/8, {n, 0, 50}]] (* Harvey P. Dale, Oct 22 2011 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|