login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129369
Expansion of 1/sqrt(1-4*x) - x/sqrt(1-4*x^2).
5
1, 1, 6, 18, 70, 246, 924, 3412, 12870, 48550, 184756, 705180, 2704156, 10399676, 40116600, 155114088, 601080390, 2333593350, 9075135300, 35345215180, 137846528820, 538257689684, 2104098963720, 8233430022168, 32247603683100
OFFSET
0,3
COMMENTS
Partial sums are A129368.
LINKS
FORMULA
a(n) = binomial(2*n, n) - (1/2)*(1-(-1)^n)*binomial(n-1, (n-1)/2).
From G. C. Greubel, Jan 31 2024: (Start)
a(2*n) = A001448(n).
a(2*n+1) = (n+1)*( 2*A000108(2*n+1) - A000108(n) ).
a(2*n+1) = 2*A002458(n) - A000984(n).
(n+1)^3*(n+2)*(n+3)*a(n+3) = 2*(n+1)*(n+2)^3*(2*n+1)*a(n+2) + 4*(n+1)^4*(n+3)*a(n+1) - 8*n*(n+2)^3*(2*n+1)*a(n), with a(0)=a(1) = 1, a(2) = 6. (End)
MATHEMATICA
CoefficientList[Series[1/Sqrt[1-4x]-x/Sqrt[1-4x^2], {x, 0, 30}], x] (* Harvey P. Dale, Feb 02 2012 *)
PROG
(Magma) B:=Binomial; [B(2*n, n) - (n mod 2)*B(n-1, Floor((n-1)/2)): n in [0..60]]; // G. C. Greubel, Jan 31 2024
(SageMath) [binomial(2*n, n) - (n%2)*binomial(n-1, (n-1)//2) for n in range(61)] # G. C. Greubel, Jan 31 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 11 2007
STATUS
approved