OFFSET
0,3
COMMENTS
Partial sums are A129368.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = binomial(2*n, n) - (1/2)*(1-(-1)^n)*binomial(n-1, (n-1)/2).
From G. C. Greubel, Jan 31 2024: (Start)
a(2*n) = A001448(n).
(n+1)^3*(n+2)*(n+3)*a(n+3) = 2*(n+1)*(n+2)^3*(2*n+1)*a(n+2) + 4*(n+1)^4*(n+3)*a(n+1) - 8*n*(n+2)^3*(2*n+1)*a(n), with a(0)=a(1) = 1, a(2) = 6. (End)
MATHEMATICA
CoefficientList[Series[1/Sqrt[1-4x]-x/Sqrt[1-4x^2], {x, 0, 30}], x] (* Harvey P. Dale, Feb 02 2012 *)
PROG
(Magma) B:=Binomial; [B(2*n, n) - (n mod 2)*B(n-1, Floor((n-1)/2)): n in [0..60]]; // G. C. Greubel, Jan 31 2024
(SageMath) [binomial(2*n, n) - (n%2)*binomial(n-1, (n-1)//2) for n in range(61)] # G. C. Greubel, Jan 31 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 11 2007
STATUS
approved