|
|
A304941
|
|
Expansion of ((1 + 4*x)/(1 - 4*x))^(3/4).
|
|
4
|
|
|
1, 6, 18, 68, 246, 948, 3572, 13896, 53286, 208452, 807132, 3169080, 12346300, 48602760, 190150440, 750018448, 2943363078, 11627329764, 45736940364, 180897649368, 712881236052, 2822389182104, 11138924119512, 44137230865392, 174405194802524, 691557285091176
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Let ((1 + k*x)/(1 - k*x))^(m/k) = a(0) + a(1)*x + a(2)*x^2 + ... then n*a(n) = 2*m*a(n-1) + k^2*(n-2)*a(n-2) for n > 1.
|
|
LINKS
|
|
|
FORMULA
|
n*a(n) = 6*a(n-1) + 4^2*(n-2)*a(n-2) for n > 1.
|
|
MATHEMATICA
|
CoefficientList[Series[((1+4x)/(1-4x))^(3/4), {x, 0, 30}], x] (* Harvey P. Dale, Oct 24 2020 *)
|
|
PROG
|
(PARI) N=66; x='x+O('x^N); Vec(((1+4*x)/(1-4*x))^(3/4))
(Magma) [n le 2 select 6^(n-1) else 2*(3*Self(n-1) + 8*(n-3)*Self(n-2))/(n-1): n in [1..40]]; // G. C. Greubel, Jun 07 2023
(SageMath)
@CachedFunction
if n<2: return 6^n
else: return 2*(3*a(n-1) + 8*(n-2)*a(n-2))//n
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|