login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304942
Triangle read by rows: T(n,k) is the number of nonisomorphic binary n X n matrices with k 1's per column under row and column permutations.
11
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 11, 5, 1, 1, 7, 35, 35, 7, 1, 1, 11, 132, 410, 132, 11, 1, 1, 15, 471, 6178, 6178, 471, 15, 1, 1, 22, 1806, 122038, 594203, 122038, 1806, 22, 1, 1, 30, 7042, 2921607, 85820809, 85820809, 2921607, 7042, 30, 1
OFFSET
0,5
EXAMPLE
Triangle begins (n >=0, k >= 0):
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 5, 11, 5, 1;
1, 7, 35, 35, 7, 1;
1, 11, 132, 410, 132, 11, 1;
1, 15, 471, 6178, 6178, 471, 15, 1;
1, 22, 1806, 122038, 594203, 122038, 1806, 22, 1;
...
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={polcoeff(prod(j=1, #q, my(g=gcd(t, q[j])); (1 + x^(q[j]/g) + O(x*x^k))^g), k)}
Blocks(n, m, k)={my(s=0); forpart(q=m, s+=permcount(q)*polcoeff(exp(sum(t=1, n, K(q, t, k)/t*x^t) + O(x*x^n)), n)); s/m!}
for(n=0, 10, for(k=0, n, print1(Blocks(n, n, k), ", ")); print)
CROSSREFS
Columns k=1..5 are A000041, A247417, A247596, A247597, A247598.
Cf. A305027.
Sequence in context: A183610 A261365 A261507 * A090011 A061554 A296373
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, May 23 2018
STATUS
approved