OFFSET
1,4
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275
Wikipedia, Lyndon word: Standard factorization
FORMULA
First column is A059966.
EXAMPLE
Triangle begins:
1;
1, 1;
2, 1, 1;
3, 3, 1, 1;
6, 5, 3, 1, 1;
9, 12, 6, 3, 1, 1;
18, 21, 14, 6, 3, 1, 1;
30, 45, 27, 15, 6, 3, 1, 1;
56, 84, 61, 29, 15, 6, 3, 1, 1;
99, 170, 120, 67, 30, 15, 6, 3, 1, 1;
186, 323, 254, 136, 69, 30, 15, 6, 3, 1, 1;
335, 640, 510, 295, 142, 70, 30, 15, 6, 3, 1, 1;
MATHEMATICA
neckQ[q_]:=Array[OrderedQ[{RotateRight[q, #], q}]&, Length[q]-1, 1, And];
aperQ[q_]:=UnsameQ@@Table[RotateRight[q, k], {k, Length[q]}];
qit[q_]:=If[#===Length[q], {q}, Prepend[qit[Drop[q, #]], Take[q, #]]]&[Max@@Select[Range[Length[q]], neckQ[Take[q, #]]&&aperQ[Take[q, #]]&]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Length[qit[#]]===k&]], {n, 12}, {k, n}]
PROG
(PARI) EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i ))-1)}
A(n)=[Vecrev(p/y) | p<-EulerMT(y*vector(n, n, sumdiv(n, d, moebius(n/d) * (2^d-1))/n))]
{ my(T=A(12)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Dec 01 2018
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Dec 11 2017
STATUS
approved