login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296373
Triangle T(n,k) = number of compositions of n whose factorization into Lyndon words (aperiodic necklaces) is of length k.
16
1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 6, 5, 3, 1, 1, 9, 12, 6, 3, 1, 1, 18, 21, 14, 6, 3, 1, 1, 30, 45, 27, 15, 6, 3, 1, 1, 56, 84, 61, 29, 15, 6, 3, 1, 1, 99, 170, 120, 67, 30, 15, 6, 3, 1, 1, 186, 323, 254, 136, 69, 30, 15, 6, 3, 1, 1, 335, 640, 510, 295, 142, 70, 30, 15, 6, 3, 1, 1
OFFSET
1,4
FORMULA
First column is A059966.
EXAMPLE
Triangle begins:
1;
1, 1;
2, 1, 1;
3, 3, 1, 1;
6, 5, 3, 1, 1;
9, 12, 6, 3, 1, 1;
18, 21, 14, 6, 3, 1, 1;
30, 45, 27, 15, 6, 3, 1, 1;
56, 84, 61, 29, 15, 6, 3, 1, 1;
99, 170, 120, 67, 30, 15, 6, 3, 1, 1;
186, 323, 254, 136, 69, 30, 15, 6, 3, 1, 1;
335, 640, 510, 295, 142, 70, 30, 15, 6, 3, 1, 1;
MATHEMATICA
neckQ[q_]:=Array[OrderedQ[{RotateRight[q, #], q}]&, Length[q]-1, 1, And];
aperQ[q_]:=UnsameQ@@Table[RotateRight[q, k], {k, Length[q]}];
qit[q_]:=If[#===Length[q], {q}, Prepend[qit[Drop[q, #]], Take[q, #]]]&[Max@@Select[Range[Length[q]], neckQ[Take[q, #]]&&aperQ[Take[q, #]]&]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Length[qit[#]]===k&]], {n, 12}, {k, n}]
PROG
(PARI) EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i ))-1)}
A(n)=[Vecrev(p/y) | p<-EulerMT(y*vector(n, n, sumdiv(n, d, moebius(n/d) * (2^d-1))/n))]
{ my(T=A(12)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Dec 01 2018
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Dec 11 2017
STATUS
approved