login
A296373
Triangle T(n,k) = number of compositions of n whose factorization into Lyndon words (aperiodic necklaces) is of length k.
16
1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 6, 5, 3, 1, 1, 9, 12, 6, 3, 1, 1, 18, 21, 14, 6, 3, 1, 1, 30, 45, 27, 15, 6, 3, 1, 1, 56, 84, 61, 29, 15, 6, 3, 1, 1, 99, 170, 120, 67, 30, 15, 6, 3, 1, 1, 186, 323, 254, 136, 69, 30, 15, 6, 3, 1, 1, 335, 640, 510, 295, 142, 70, 30, 15, 6, 3, 1, 1
OFFSET
1,4
FORMULA
First column is A059966.
EXAMPLE
Triangle begins:
1;
1, 1;
2, 1, 1;
3, 3, 1, 1;
6, 5, 3, 1, 1;
9, 12, 6, 3, 1, 1;
18, 21, 14, 6, 3, 1, 1;
30, 45, 27, 15, 6, 3, 1, 1;
56, 84, 61, 29, 15, 6, 3, 1, 1;
99, 170, 120, 67, 30, 15, 6, 3, 1, 1;
186, 323, 254, 136, 69, 30, 15, 6, 3, 1, 1;
335, 640, 510, 295, 142, 70, 30, 15, 6, 3, 1, 1;
MATHEMATICA
neckQ[q_]:=Array[OrderedQ[{RotateRight[q, #], q}]&, Length[q]-1, 1, And];
aperQ[q_]:=UnsameQ@@Table[RotateRight[q, k], {k, Length[q]}];
qit[q_]:=If[#===Length[q], {q}, Prepend[qit[Drop[q, #]], Take[q, #]]]&[Max@@Select[Range[Length[q]], neckQ[Take[q, #]]&&aperQ[Take[q, #]]&]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Length[qit[#]]===k&]], {n, 12}, {k, n}]
PROG
(PARI) EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i ))-1)}
A(n)=[Vecrev(p/y) | p<-EulerMT(y*vector(n, n, sumdiv(n, d, moebius(n/d) * (2^d-1))/n))]
{ my(T=A(12)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Dec 01 2018
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Dec 11 2017
STATUS
approved