login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296372
Triangle read by rows: T(n,k) is the number of normal sequences of length n whose standard factorization into Lyndon words (aperiodic necklaces) has k factors.
21
1, 1, 2, 4, 5, 4, 18, 31, 18, 8, 108, 208, 153, 56, 16, 778, 1700, 1397, 616, 160, 32, 6756, 15980, 14668, 7197, 2196, 432, 64, 68220, 172326, 171976, 93293, 31564, 7208, 1120, 128
OFFSET
1,3
COMMENTS
A finite sequence is normal if its union is an initial interval of positive integers.
EXAMPLE
The T(3,2) = 5 normal sequences are {2,1,2}, {1,2,1}, {2,1,3}, {2,3,1}, {3,1,2}.
Triangle begins:
1;
1, 2;
4, 5, 4;
18, 31, 18, 8;
108, 208, 153, 56, 16;
778, 1700, 1397, 616, 160, 32;
6756, 15980, 14668, 7197, 2196, 432, 64;
MATHEMATICA
neckQ[q_]:=Array[OrderedQ[{q, RotateRight[q, #]}]&, Length[q]-1, 1, And];
aperQ[q_]:=UnsameQ@@Table[RotateRight[q, k], {k, Length[q]}];
qit[q_]:=If[#===Length[q], {q}, Prepend[qit[Drop[q, #]], Take[q, #]]]&[Max@@Select[Range[Length[q]], neckQ[Take[q, #]]&&aperQ[Take[q, #]]&]];
allnorm[n_]:=Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1];
Table[Length[Select[Join@@Permutations/@allnorm[n], Length[qit[#]]===k&]], {n, 5}, {k, n}]
PROG
(PARI) \\ here U(n, k) is A074650(n, k).
EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i ))-1)}
U(n, k)={sumdiv(n, d, moebius(n/d) * k^d)/n}
A(n)={[Vecrev(p/y) | p<-sum(k=1, n, EulerMT(vector(n, n, y*U(n, k)))*sum(j=k, n, (-1)^(k-j)*binomial(j, k)))]}
{ my(T=A(10)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Dec 08 2018
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Dec 11 2017
EXTENSIONS
Example and program corrected by Gus Wiseman, Dec 08 2018
STATUS
approved