login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228369
Triangle read by rows in which row n lists the compositions (ordered partitions) of n in lexicographic order.
36
1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 2, 1, 1, 2, 2, 3, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 2, 1, 3, 1, 1, 4, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 3, 3, 1, 1, 3, 2, 4, 1, 5, 1, 1, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
The representation of the compositions (for fixed n) is as lists of parts, the order between individual compositions (for the same n) is lexicographic. - Joerg Arndt, Sep 02 2013
The equivalent sequence for partitions is A026791.
Row n has length A001792(n-1).
Row sums give A001787, n >= 1.
The m-th composition has length A008687(m+1), m >= 1. - Andrey Zabolotskiy, Jul 19 2017
EXAMPLE
Illustration of initial terms:
-----------------------------------
n j Diagram Composition j
-----------------------------------
. _
1 1 |_| 1;
. _ _
2 1 | |_| 1, 1,
2 2 |_ _| 2;
. _ _ _
3 1 | | |_| 1, 1, 1,
3 2 | |_ _| 1, 2,
3 3 | |_| 2, 1,
3 4 |_ _ _| 3;
. _ _ _ _
4 1 | | | |_| 1, 1, 1, 1,
4 2 | | |_ _| 1, 1, 2,
4 3 | | |_| 1, 2, 1,
4 4 | |_ _ _| 1, 3,
4 5 | | |_| 2, 1, 1,
4 6 | |_ _| 2, 2,
4 7 | |_| 3, 1,
4 8 |_ _ _ _| 4;
.
Triangle begins:
[1];
[1,1],[2];
[1,1,1],[1,2],[2,1],[3];
[1,1,1,1],[1,1,2],[1,2,1],[1,3],[2,1,1],[2,2],[3,1],[4];
[1,1,1,1,1],[1,1,1,2],[1,1,2,1],[1,1,3],[1,2,1,1],[1,2,2],[1,3,1],[1,4],[2,1,1,1],[2,1,2],[2,2,1],[2,3],[3,1,1],[3,2],[4,1],[5];
...
MATHEMATICA
Table[Sort[Join@@Permutations/@IntegerPartitions[n], OrderedQ[PadRight[{#1, #2}]]&], {n, 5}] (* Gus Wiseman, Dec 14 2017 *)
PROG
(PARI)
gen_comp(n)=
{ /* Generate compositions of n as lists of parts (order is lex): */
my(ct = 0);
my(m, z, pt);
\\ init:
my( a = vector(n, j, 1) );
m = n;
while ( 1,
ct += 1;
pt = vector(m, j, a[j]);
/* for A228369 print composition: */
for (j=1, m, print1(pt[j], ", ") );
\\ /* for A228525 print reversed (order is colex): */
\\ forstep (j=m, 1, -1, print1(pt[j], ", ") );
if ( m<=1, return(ct) ); \\ current is last
a[m-1] += 1;
z = a[m] - 2;
a[m] = 1;
m += z;
);
return(ct);
}
for(n=1, 12, gen_comp(n) );
\\ Joerg Arndt, Sep 02 2013
(Haskell)
a228369 n = a228369_list !! (n - 1)
a228369_list = concatMap a228369_row [1..]
a228369_row 0 = []
a228369_row n
| 2^k == 2 * n + 2 = [k - 1]
| otherwise = a228369_row (n `div` 2^k) ++ [k] where
k = a007814 (n + 1) + 1
-- Peter Kagey, Jun 27 2016
(Python)
a = [[[]], [[1]]]
for s in range(2, 9):
a.append([])
for k in range(1, s+1):
for ss in a[s-k]:
a[-1].append([k]+ss)
print(a)
# Andrey Zabolotskiy, Jul 19 2017
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Aug 28 2013
STATUS
approved