OFFSET
1,4
COMMENTS
Differs from A080576 in a(18): Here, (...,1+3,2+2,4), there (...,2+2,1+3,4).
The representation of the partitions (for fixed n) is as (weakly) increasing lists of parts, the order between individual partitions (for the same n) is lexicographic (see example). - Joerg Arndt, Sep 03 2013
The equivalent sequence for compositions (ordered partitions) is A228369. - Omar E. Pol, Oct 19 2019
LINKS
Alois P. Heinz, Rows n = 1..19, flattened
Wikiversity, Lexicographic and colexicographic order
EXAMPLE
First six rows are:
[[1]];
[[1, 1], [2]];
[[1, 1, 1], [1, 2], [3]];
[[1, 1, 1, 1], [1, 1, 2], [1, 3], [2, 2], [4]];
[[1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 4], [2, 3], [5]];
[[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2], [1, 1, 1, 3], [1, 1, 2, 2], [1, 1, 4], [1, 2, 3], [1, 5], [2, 2, 2], [2, 4], [3, 3], [6]];
...
From Omar E. Pol, Sep 03 2013: (Start)
Illustration of initial terms:
----------------------------------
. Ordered
n j Diagram partition j
----------------------------------
. _
1 1 |_| 1;
. _ _
2 1 | |_| 1, 1,
2 2 |_ _| 2;
. _ _ _
3 1 | | |_| 1, 1, 1,
3 2 | |_ _| 1, 2,
3 3 |_ _ _| 3;
. _ _ _ _
4 1 | | | |_| 1, 1, 1, 1,
4 2 | | |_ _| 1, 1, 2,
4 3 | |_ _ _| 1, 3,
4 4 | |_ _| 2, 2,
4 5 |_ _ _ _| 4;
...
(End)
MAPLE
T:= proc(n) local b, ll;
b:= proc(n, l)
if n=0 then ll:= ll, l[]
else seq(b(n-i, [l[], i]), i=`if`(l=[], 1, l[-1])..n)
fi
end;
ll:= NULL; b(n, []); ll
end:
seq(T(n), n=1..8); # Alois P. Heinz, Jul 16 2011
MATHEMATICA
T[n0_] := Module[{b, ll}, b[n_, l_] := If[n == 0, ll = Join[ll, l], Table[ b[n - i, Append[l, i]], {i, If[l == {}, 1, l[[-1]]], n}]]; ll = {}; b[n0, {}]; ll]; Table[T[n], {n, 1, 8}] // Flatten (* Jean-François Alcover, Aug 05 2015, after Alois P. Heinz *)
Table[DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions[n]], x_ /; x == 0, 2], {n, 7}] // Flatten (* Robert Price, May 18 2020 *)
PROG
(Python)
t = [[[]]]
for n in range(1, 10):
p = []
for minp in range(1, n):
p += [[minp] + pp for pp in t[n-minp] if min(pp) >= minp]
t.append(p + [[n]])
print(t)
# Andrey Zabolotskiy, Oct 18 2019
CROSSREFS
Row lengths are given in A006128.
Partition lengths are in A193173.
Other partition orderings: A026792, A036037, A080577, A125106, A139100, A181087, A181317, A182937, A228100, A240837, A242628.
Row lengths are A000041.
Partition sums are A036042.
Partition minima are A196931.
Partition maxima are A194546.
The reflected version is A211992.
The length-sensitive version (sum/length/lex) is A036036.
The colexicographic version (sum/colex) is A080576.
The version for non-reversed partitions is A193073.
Compositions under the same ordering (sum/lex) are A228369.
The reverse-lexicographic version (sum/revlex) is A228531.
The Heinz numbers of these partitions are A334437.
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved