This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A302247 Irregular triangle read by rows in which row n lists all parts of all partitions of n, in nondecreasing order. 4
 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS EXAMPLE Triangle begins: 1; 1,1,2; 1,1,1,1,2,3; 1,1,1,1,1,1,1,2,2,2,3,4; 1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,4,5; 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,5,6; ... For n = 4 the partitions of 4 are [4], [2, 2], [3, 1], [2, 1, 1], [1, 1, 1, 1]. There are seven 1's, three 2's, only one 3 and only one 4, so the 4th row of this triangle is [1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4]. CROSSREFS Mirror of A302246. Row n has length A006128(n). The sum of row n is A066186(n). The number of parts k in row n is A066633(n,k). The sum of all parts k in row n is A138785(n,k). The number of parts >= k in row n is A181187(n,k). The sum of all parts >= k in row n is A206561(n,k). The number of parts <= k in row n is A210947(n,k). The sum of all parts <= k in row n is A210948(n,k). First differs from both A026791 and A080576 at a(17) = T(4,7). Sequence in context: A140225 A104758 A143227 * A026791 A080576 A321744 Adjacent sequences:  A302244 A302245 A302246 * A302248 A302249 A302250 KEYWORD nonn,tabf AUTHOR Omar E. Pol, Apr 05 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 09:22 EDT 2019. Contains 328026 sequences. (Running on oeis4.)