|
|
A026790
|
|
a(n) = Sum_{k=0..floor(n/2)} T(n-k,k), T given by A026780.
|
|
11
|
|
|
1, 1, 2, 4, 7, 12, 23, 41, 72, 135, 243, 432, 804, 1455, 2608, 4836, 8785, 15838, 29306, 53385, 96654, 178600, 326019, 592140, 1093135, 1998537, 3638700, 6712659, 12287071, 22412784, 41325279, 75712253, 138308808, 254912873
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
MAPLE
|
T:= proc(n, k) option remember;
if n<0 then 0;
elif k=0 or k =n then 1;
elif k <= n/2 then
procname(n-1, k-1)+procname(n-2, k-1)+procname(n-1, k) ;
else
procname(n-1, k-1)+procname(n-1, k) ;
fi ;
end proc:
seq( add(T(n-k, k), k=0..floor(n/2)), n=0..40); # G. C. Greubel, Nov 02 2019
|
|
MATHEMATICA
|
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[k<=n/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]];
Table[Sum[T[n-k, k], {k, 0, Floor[n/2]}], {n, 0, 40}] (* G. C. Greubel, Nov 02 2019 *)
|
|
PROG
|
(Sage)
@CachedFunction
def T(n, k):
if (n<0): return 0
elif (k==0 or k==n): return 1
elif (k<=n/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[sum(T(n-k, k) for k in (0..floor(n/2))) for n in (0..40)] # G. C. Greubel, Nov 02 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|