|
|
A099604
|
|
Antidiagonal sums of triangle A099602, in which row n equals the inverse binomial transform of column n of the triangle of trinomial coefficients (A027907).
|
|
2
|
|
|
1, 1, 2, 4, 7, 12, 23, 40, 72, 131, 233, 420, 756, 1355, 2438, 4381, 7868, 14144, 25413, 45661, 82058, 147444, 264943, 476092, 855483, 1537236, 2762296, 4963591, 8919173, 16027012, 28799164, 51749715, 92989886, 167094985, 300255720
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Table of n, a(n) for n=0..34.
|
|
FORMULA
|
G.f.: (1+x-x^3)/(1-2*x^2-3*x^3+2*x^5+x^6).
a(n) = 2*a(n-2) + 3*a(n-3) - 2*a(n-5) - a(n-6) for n>=6.
|
|
MATHEMATICA
|
LinearRecurrence[{0, 2, 3, 0, -2, -1}, {1, 1, 2, 4, 7, 12}, 35] (* Jean-François Alcover, Oct 30 2017 *)
|
|
PROG
|
(PARI) a(n)=polcoeff((1+x-x^3)/(1-2*x^2-3*x^3+2*x^5+x^6)+x*O(x^n), n, x)
|
|
CROSSREFS
|
Cf. A099602, A027907.
Sequence in context: A270995 A299023 A007323 * A026790 A054165 A054171
Adjacent sequences: A099601 A099602 A099603 * A099605 A099606 A099607
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Paul D. Hanna, Oct 25 2004
|
|
STATUS
|
approved
|
|
|
|