login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A026792
List of juxtaposed reverse-lexicographically ordered partitions of the positive integers.
45
1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 2, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1, 5, 3, 2, 4, 1, 2, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 3, 3, 4, 2, 2, 2, 2, 5, 1, 3, 2, 1, 4, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 4, 3, 5, 2, 3, 2, 2, 6, 1, 3, 3, 1, 4, 2, 1, 2, 2, 2, 1, 5, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 2, 2, 1
OFFSET
1,2
COMMENTS
The representation of the partitions (for fixed n) is as (weakly) decreasing lists of parts, the order between individual partitions (for the same n) is (list-)reversed lexicographic; see examples. [Joerg Arndt, Sep 03 2013]
Written as a triangle; row n has length A006128(n); row sums give A066186. Also written as an irregular tetrahedron in which T(n,j,k) is the k-th largest part of the j-th partition of n; the sum of column k in the slice n is A181187(n,k); right border of the slices gives A182715. - Omar E. Pol, Mar 25 2012
The equivalent sequence for compositions (ordered partitions) is A228351. - Omar E. Pol, Sep 03 2013
This is the reverse-colexicographic order of integer partitions, or the reflected reverse-lexicographic order of reversed integer partitions. It is not reverse-lexicographic order (A080577), wherein we would have (3,1) before (2,2). - Gus Wiseman, May 12 2020
EXAMPLE
E.g. the partitions of 3 (3,2+1,1+1+1) appear as the string 3,2,1,1,1,1.
So the list begins:
1
2, 1, 1,
3, 2, 1, 1, 1, 1,
4, 2, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1,
5, 3, 2, 4, 1, 2, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1,
...
From Omar E. Pol, Sep 03 2013: (Start)
Illustration of initial terms:
---------------------------------
n j Diagram Partition
---------------------------------
. _
1 1 |_| 1;
. _ _
2 1 |_ | 2,
2 2 |_|_| 1, 1;
. _ _ _
3 1 |_ _ | 3,
3 2 |_ | | 2, 1,
3 3 |_|_|_| 1, 1, 1;
. _ _ _ _
4 1 |_ _ | 4,
4 2 |_ _|_ | 2, 2,
4 3 |_ _ | | 3, 1,
4 4 |_ | | | 2, 1, 1,
4 5 |_|_|_|_| 1, 1, 1, 1;
...
(End)
From Gus Wiseman, May 12 2020: (Start)
This sequence can also be interpreted as the following triangle, whose n-th row is itself a finite triangle with A000041(n) rows. Showing these partitions as their Heinz numbers gives A334436.
0
(1)
(2)(11)
(3)(21)(111)
(4)(22)(31)(211)(1111)
(5)(32)(41)(221)(311)(2111)(11111)
(6)(33)(42)(222)(51)(321)(411)(2211)(3111)(21111)(111111)
(End)
MATHEMATICA
revcolex[f_, c_]:=OrderedQ[PadRight[{Reverse[c], Reverse[f]}]];
Join@@Table[Sort[IntegerPartitions[n], revcolex], {n, 0, 8}] (* reverse-colexicographic order, Gus Wiseman, May 10 2020 *)
- or -
revlex[f_, c_]:=OrderedQ[PadRight[{c, f}]];
Reverse/@Join@@Table[Sort[Reverse/@IntegerPartitions[n], revlex], {n, 0, 8}] (* reflected reverse-lexicographic order, Gus Wiseman, May 12 2020 *)
CROSSREFS
The reflected version for reversed partitions is A080577.
The partition minima appear to be A182715.
The graded reversed version is A211992.
The version for compositions is A228351.
The Heinz numbers of these partitions are A334436.
Sequence in context: A211028 A239001 A277648 * A334301 A139100 A237982
KEYWORD
nonn,tabf
EXTENSIONS
Terms 81st, 83rd and 84th corrected by Omar E. Pol, Aug 16 2009
STATUS
approved