

A181087


Partitions of n in the order of increasing smallest numbers of prime signatures.


4



1, 2, 1, 1, 3, 1, 2, 4, 1, 3, 1, 1, 1, 5, 2, 2, 1, 4, 1, 1, 2, 6, 2, 3, 1, 5, 1, 1, 3, 7, 2, 4, 1, 2, 2, 1, 6, 1, 1, 1, 1, 3, 3, 1, 1, 4, 8, 2, 5, 1, 2, 3, 1, 7, 1, 1, 1, 2, 3, 4, 1, 1, 5, 9, 2, 6, 1, 2, 4, 1, 8, 1, 1, 1, 3, 3, 5, 2, 2, 2, 1, 1, 6, 10, 1, 3, 3, 2, 7, 1, 1, 2, 2, 4, 4, 1, 2, 5, 1, 9, 1, 1, 1, 4, 3, 6, 2, 2, 3, 1, 1, 7, 11, 1, 3, 4, 2, 8, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The parts of each partition are listed in increasing order.


LINKS



EXAMPLE

Smallest number with prime signature [1,1,1] is 2^1*3^1*5^1 = 30, the smallest number for [4] is 2^4 = 16, and thus [4] < [1,1,1] in this order.
First partitions in the order of increasing smallest numbers of prime signatures are: [1], [2], [1,1], [3], [1,2], [4], [1,3], [1,1,1], [5], [2,2], [1,4], [1,1,2], [6], [2,3], [1,5], [1,1,3], [7], [2,4], ...
Smallest numbers with these prime signatures are: 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, ... A025487


MATHEMATICA

DeleteDuplicates[Map[Sort[Map[Last, FactorInteger[#]]] &, Range[1000]]] // Grid (* Geoffrey Critzer, Nov 27 2015 *)


PROG

(Sage)
seen = set()
a = []
for n in PositiveIntegers():
psig = tuple(sorted(m for p, m in factor(n)))
if psig not in seen:
a.extend(psig)
seen.add(psig)


CROSSREFS



KEYWORD



AUTHOR



STATUS

approved



