|
|
A008687
|
|
Number of 1's in 2's complement representation of -n.
|
|
15
|
|
|
0, 1, 1, 2, 1, 3, 2, 2, 1, 4, 3, 3, 2, 3, 2, 2, 1, 5, 4, 4, 3, 4, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 1, 6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 4, 3, 3, 2, 5, 4, 4, 3, 4, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 1, 7, 6, 6, 5, 6, 5, 5, 4, 6, 5, 5, 4, 5, 4, 4, 3, 6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 4, 3, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
a(A127904(n)) = n and a(m) < n for m < A127904(n). - Reinhard Zumkeller, Feb 05 2007
a(n) = A000120(A010078(n)), n>0; a(n) = A023416(A004754(n-1)), n>1. - Reinhard Zumkeller, Dec 04 2015
Conjecture: a(n)+1 is the length of the Hirzebruch continued fraction for the Stern-Brocot tree fraction A007305(n)/A007306(n). - Andrey Zabolotskiy, Apr 17 2020
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Michael Gilleland, Some Self-Similar Integer Sequences
Wikipedia, Two's complement
|
|
FORMULA
|
a(n) = if n<=1 then n else (n mod 2) + a((n mod 2) + floor(n/2)). - Reinhard Zumkeller, Feb 05 2007
a(n) = if n<2 then n else a(ceiling(n/2)) + n mod 2. - Reinhard Zumkeller, Jul 25 2006
Min{m: a(m)=n} = if n>0 then A083318(n-1) else 0. - Reinhard Zumkeller, Jul 25 2006
|
|
MATHEMATICA
|
a[0] = 0; a[1] = 1; a[n_] := a[n] = Mod[n, 2] + a[Mod[n, 2] + Floor[n/2]]; Array[a, 96, 0] (* Jean-François Alcover, Aug 12 2017, after Reinhard Zumkeller *)
|
|
PROG
|
(Haskell)
a008687 n = a008687_list !! n
a008687_list = 0 : 1 : c [1] where c (e:es) = e : c (es ++ [e+1, e])
-- Reinhard Zumkeller, Mar 07 2011
|
|
CROSSREFS
|
A023416(n-1) + 1.
This is Guy Steele's sequence GS(4, 3) (see A135416).
Cf. A000120, A004754, A010078, A023416, A290251.
Cf. A007305, A007306, A061313, A088696.
Sequence in context: A175548 A038571 A290251 * A080801 A336391 A336390
Adjacent sequences: A008684 A008685 A008686 * A008688 A008689 A008690
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
R. H. Hardin
|
|
STATUS
|
approved
|
|
|
|