login
A004754
Numbers n whose binary expansion starts 10.
30
2, 4, 5, 8, 9, 10, 11, 16, 17, 18, 19, 20, 21, 22, 23, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 128, 129, 130, 131
OFFSET
1,1
COMMENTS
A000120(a(n)) = A000120(n); A023416(a(n-1)) = A008687(n) for n > 1. - Reinhard Zumkeller, Dec 04 2015
FORMULA
a(2n) = 2a(n), a(2n+1) = 2a(n) + 1 + [n==0].
a(n) = n + 2^floor(log_2(n)) = n + A053644(n).
a(2^m+k) = 2^(m+1) + k, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Aug 08 2016
EXAMPLE
10 in binary is 1010, so 10 is in sequence.
MATHEMATICA
w = {1, 0}; Select[Range[2, 131], If[# < 2^(Length@ w - 1), True, Take[IntegerDigits[#, 2], Length@ w] == w] &] (* Michael De Vlieger, Aug 08 2016 *)
PROG
(PARI) a(n)=n+2^floor(log(n)/log(2))
(PARI) is(n)=n>1 && !binary(n)[2] \\ Charles R Greathouse IV, Sep 23 2012
(Haskell)
import Data.List (transpose)
a004754 n = a004754_list !! (n-1)
a004754_list = 2 : concat (transpose [zs, map (+ 1) zs])
where zs = map (* 2) a004754_list
-- Reinhard Zumkeller, Dec 04 2015
(Python)
def A004754(n): return n+(1<<n.bit_length()-1) # Chai Wah Wu, Jul 13 2022
CROSSREFS
Cf. A123001 (binary version), A004755 (11), A004756 (100), A004757 (101), A004758 (110), A004759 (111).
Apart from initial terms, same as A004761.
Sequence in context: A072756 A325429 A004761 * A322014 A010450 A035231
KEYWORD
nonn,easy,base
EXTENSIONS
Edited by Ralf Stephan, Oct 12 2003
STATUS
approved