login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n whose binary expansion starts 10.
31

%I #35 Jul 13 2022 20:37:29

%S 2,4,5,8,9,10,11,16,17,18,19,20,21,22,23,32,33,34,35,36,37,38,39,40,

%T 41,42,43,44,45,46,47,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,

%U 80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,128,129,130,131

%N Numbers n whose binary expansion starts 10.

%C A000120(a(n)) = A000120(n); A023416(a(n-1)) = A008687(n) for n > 1. - _Reinhard Zumkeller_, Dec 04 2015

%H T. D. Noe, <a href="/A004754/b004754.txt">Table of n, a(n) for n = 1..1023</a>

%H Ralf Stephan, <a href="/somedcgf.html">Some divide-and-conquer sequences ...</a>

%H Ralf Stephan, <a href="/A079944/a079944.ps">Table of generating functions</a>

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%F a(2n) = 2a(n), a(2n+1) = 2a(n) + 1 + [n==0].

%F a(n) = n + 2^floor(log_2(n)) = n + A053644(n).

%F a(2^m+k) = 2^(m+1) + k, m >= 0, 0 <= k < 2^m. - _Yosu Yurramendi_, Aug 08 2016

%e 10 in binary is 1010, so 10 is in sequence.

%t w = {1, 0}; Select[Range[2, 131], If[# < 2^(Length@ w - 1), True, Take[IntegerDigits[#, 2], Length@ w] == w] &] (* _Michael De Vlieger_, Aug 08 2016 *)

%o (PARI) a(n)=n+2^floor(log(n)/log(2))

%o (PARI) is(n)=n>1 && !binary(n)[2] \\ _Charles R Greathouse IV_, Sep 23 2012

%o (Haskell)

%o import Data.List (transpose)

%o a004754 n = a004754_list !! (n-1)

%o a004754_list = 2 : concat (transpose [zs, map (+ 1) zs])

%o where zs = map (* 2) a004754_list

%o -- _Reinhard Zumkeller_, Dec 04 2015

%o (Python)

%o def A004754(n): return n+(1<<n.bit_length()-1) # _Chai Wah Wu_, Jul 13 2022

%Y Cf. A123001 (binary version), A004755 (11), A004756 (100), A004757 (101), A004758 (110), A004759 (111).

%Y Cf. A004760, A053644, A062050, A076877.

%Y Apart from initial terms, same as A004761.

%Y Cf. A000120, A023416, A008687.

%K nonn,easy,base

%O 1,1

%A _N. J. A. Sloane_

%E Edited by _Ralf Stephan_, Oct 12 2003