login
A004757
Binary expansion starts 101.
10
5, 10, 11, 20, 21, 22, 23, 40, 41, 42, 43, 44, 45, 46, 47, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185
OFFSET
1,1
LINKS
FORMULA
a(2n) = 2a(n), a(2n+1) = 2a(n) + 1 + 4*[n==0].
a(n) = n + 4 * 2^floor(log_2(n)) = A004756(n) + A053644(n).
a(2^m+k) = 5*2^m + k, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Aug 08 2016
EXAMPLE
22 in binary is 10110, so 22 is in sequence.
MATHEMATICA
Table[n + 4*2^Floor@ Log2@ n, {n, 57}] (* or *)
w = {1, 0, 1}; Select[Range[5, 185], If[# < 2^(Length@ w - 1), True, Take[IntegerDigits[#, 2], Length@ w] == w] &] (* Michael De Vlieger, Aug 10 2016 *)
Select[Range[5, 200], Take[IntegerDigits[#, 2], 3]=={1, 0, 1}&] (* Harvey P. Dale, Aug 26 2016 *)
PROG
(PARI) a(n)=n+4*2^floor(log(n)/log(2))
(Haskell)
import Data.List (transpose)
a004757 n = a004757_list !! (n-1)
a004757_list = 5 : concat (transpose [zs, map (+ 1) zs])
where zs = map (* 2) a004757_list
-- Reinhard Zumkeller, Dec 04 2015
(Python)
def A004757(n): return n+(2<<n.bit_length()) # Chai Wah Wu, Jul 13 2022
CROSSREFS
Cf. A004754 (10), A004755 (11), A004756 (100), A004758 (110), A004759 (111).
Sequence in context: A136822 A189151 A120513 * A007527 A033894 A033649
KEYWORD
nonn,base,easy
EXTENSIONS
Edited by Ralf Stephan, Oct 12 2003
STATUS
approved