This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A004760 List of numbers whose binary expansion does not begin 10. 35
 0, 1, 3, 6, 7, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS For n>=2 sequence {a(n+2)} is the minimal recursive such that A007814(a(n+2))=A007814(n). - Vladimir Shevelev, Apr 27 2009 A053645(a(n)) = n-1 for n>0. - Reinhard Zumkeller, May 20 2009 LINKS Michael De Vlieger, Table of n, a(n) for n = 1..10000 V. Shevelev, Several results on sequences which are similar to the positive integers, arXiv:0904.2101 [math.NT], 2009. [Vladimir Shevelev, Apr 15 2009] FORMULA For n>0, a(n) = 3n - 2 - A006257(n-1). - Ralf Stephan, Sep 16 2003 a(0) = 0, a(1) = 1, for n>0: a(2n) = 2*a(n) + 1, a(2n+1) = 2*a(n+1) . - Philippe Deléham, Feb 29 2004 For n>=3, A007814(a(n)) = A007814(n-2). - Vladimir Shevelev, Apr 15 2009 a(n+2) = min{m>a(n+1): A007814(m)=A007814(n)}; A010060(a(n+2)) = 1-A010060(n). [Vladimir Shevelev, Apr 27 2009] a(1)=0, a(2)=1, a(2^m+k+2) = 2^(m+1)+2^m+k , m>=0, 0<=k<2^m. - Yosu Yurramendi, Jul 30 2016 G.f.: x/(1-x)^2 + (x/(1-x))*Sum_{k>=0} 2^k*x^(2^k). - Robert Israel, Aug 03 2016 a(2^m+k) = A004761(2^m+k) + 2^m, m>=0, 0<=k<2^m. - Yosu Yurramendi, Aug 08 2016 MAPLE 0, 1, seq(seq(3*2^d+x, x=0..2^d-1), d=0..6); # Robert Israel, Aug 03 2016 MATHEMATICA Select[Range@ 125, If[Length@ # < 2, #, Take[#, 2]] &@ IntegerDigits[#, 2] != {1, 0} &] (* Michael De Vlieger, Aug 02 2016 *) PROG (PARI) is(n)=n<2 || binary(n)[2] \\ Charles R Greathouse IV, Sep 23 2012 (PARI) print1("0, 1"); for(i=0, 5, for(n=3<

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 12 19:19 EST 2018. Contains 317116 sequences. (Running on oeis4.)