login
A159615
The slowest increasing sequence beginning with a(1)=2 such that a(n) and n are both odious or both not odious.
10
2, 4, 5, 7, 9, 10, 11, 13, 15, 17, 19, 20, 21, 22, 23, 25, 27, 29, 31, 33, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 101, 103, 105, 107, 109, 111
OFFSET
1,1
LINKS
Vladimir Shevelev, Several results on sequences which are similar to the positive integers, arXiv:0904.2101 [math.NT], 2009.
FORMULA
For n>=1, a(n)=min{m>a(n-1): A010060(m)=A010060(n)}.
a(2n+1)=2a(n)+1.
a(2n)=3n+1+j,if n=2^k+j; a(2n)=(10n-4j)/3,if n=2^k+2^(k-1)+j, where 0<=j<=2^(k-1)-1.
EXAMPLE
If n=3, then k=1, j=0, therefore a(6)=(10*3-4*0)/3=10.
MAPLE
read("transforms") ; isA000069 := proc(n) option remember ; RETURN( type(wt(n), 'odd') ) ; end:
A159615 := proc(n) option remember; if n = 1 then 2; else for a from procname(n-1)+1 do if isA000069(a) = isA000069(n) then RETURN(a) ; fi; od: fi; end:
seq(A159615(n), n=1..120) ; # R. J. Mathar, Aug 17 2009
MATHEMATICA
odiousQ[n_] := OddQ[DigitCount[n, 2, 1]];
a[1] = 2; a[n_] := a[n] = For[k = a[n-1]+1, True, k++, If[FreeQ[Array[a, n-1], k] && odiousQ[n] && odiousQ[k] || !odiousQ[n] && !odiousQ[k], Return[k] ] ];
Array[a, 80] (* Jean-François Alcover, Dec 10 2017 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Shevelev, Apr 17 2009
EXTENSIONS
Edited and extended by R. J. Mathar, Aug 17 2009
STATUS
approved