login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004759
Binary expansion starts 111.
8
7, 14, 15, 28, 29, 30, 31, 56, 57, 58, 59, 60, 61, 62, 63, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244
OFFSET
1,1
COMMENTS
This is the minimal recursive sequence such that a(1)=7, A007814(a(n))= A007814(n) and A010060(a(n))=A010060(n). - Vladimir Shevelev, Apr 23 2009
LINKS
FORMULA
a(2n) = 2a(n), a(2n+1) = 2a(n) + 1 + 6[n==0].
a(n) = n + 6 * 2^floor(log_2(n)) = A004758(n) + A053644(n).
a(n+1) = min{m > a(n): A007814(m) = A007814(n+1) and A010060(m) = A010060(n+1)}. a(2^k) - a(2^k-1) = A103204(k+2), k >= 1. - Vladimir Shevelev, Apr 23 2009
a(2^m+k) = 7*2^m + k, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Aug 08 2016
EXAMPLE
30 in binary is 11110, so 30 is in sequence.
MATHEMATICA
w = {1, 1, 1}; Select[Range[5, 244], If[# < 2^(Length@ w - 1), True, Take[IntegerDigits[#, 2], Length@ w] == w] &] (* Michael De Vlieger, Aug 10 2016 *)
Sort[FromDigits[#, 2]&/@(Flatten[Table[Join[{1, 1, 1}, #]&/@Tuples[{1, 0}, n], {n, 0, 5}], 1])] (* Harvey P. Dale, Sep 01 2016 *)
PROG
(PARI) a(n)=n+6*2^floor(log(n)/log(2))
(Haskell)
import Data.List (transpose)
a004759 n = a004759_list !! (n-1)
a004759_list = 7 : concat (transpose [zs, map (+ 1) zs])
where zs = map (* 2) a004759_list
-- Reinhard Zumkeller, Dec 03 2015
(Python)
def A004759(n): return n+(3<<n.bit_length()) # Chai Wah Wu, Jul 13 2022
CROSSREFS
KEYWORD
nonn,base,easy
EXTENSIONS
Edited by Ralf Stephan, Oct 12 2003
STATUS
approved