login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069137
Numbers which are sums of neither 1, 2, 3, 4, 5 or 6 nonnegative cubes.
3
7, 14, 15, 21, 22, 23, 42, 47, 49, 50, 61, 77, 85, 87, 103, 106, 111, 112, 113, 114, 122, 140, 148, 159, 166, 167, 174, 175, 178, 185, 186, 204, 211, 212, 223, 229, 230, 231, 237, 238, 239, 276, 292, 295, 300, 302, 303, 311, 327, 329, 337, 340, 356, 363, 364
OFFSET
1,1
COMMENTS
Sequence is conjectured to be finite.
REFERENCES
Bohman, Jan and Froberg, Carl-Erik; Numerical investigation of Waring's problem for cubes, Nordisk Tidskr. Informationsbehandling (BIT) 21 (1981), 118-122.
F. Romani, Computations concerning Waring's problem, Calcolo, 19 (1982), 415-431.
LINKS
Jean-Marc Deshouillers, Francois Hennecart and Bernard Landreau; appendix by I. Gusti Putu Purnaba, 7373170279850, Math. Comp. 69 (2000), 421-439.
FORMULA
Natural numbers remaining if union of A003325, A003072, A003327, A003328, A003329 and A000578 sets were deleted. Remark: this sequence itself does not include cubes, in contrast to A085334.
EXAMPLE
Numbers which need at least seven terms to represent them as a sum of positive cubes: 14=8+1+1+1+1+1+1.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 08 2002; edited Sep 15 2006
STATUS
approved