

A281013


Tetrangle T(n,k,i) = ith part of kth prime composition of n.


16



1, 2, 2, 1, 3, 2, 1, 1, 3, 1, 4, 2, 1, 1, 1, 2, 2, 1, 3, 1, 1, 3, 2, 4, 1, 5, 2, 1, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 3, 1, 2, 3, 2, 1, 4, 1, 1, 4, 2, 5, 1, 6, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 3, 1, 1, 1, 1, 3, 1, 1, 2, 3, 1, 2, 1, 3, 2, 1, 1, 3, 2, 2, 3, 3, 1, 4, 1, 1, 1, 4, 1, 2, 4, 2, 1, 4, 3, 5, 1, 1, 5, 2, 6, 1, 7
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The *product of two or more finite sequences is defined to be the lexicographically minimal sequence obtainable by shuffling them together. Every finite positive integer sequence has a unique *factorization using prime compositions P = {(1), (2), (21), (3), (211), ...}. See A060223 and A228369 for details.
These are coLyndon compositions, ordered first by sum and then lexicographically.  Gus Wiseman, Nov 15 2019


LINKS



FORMULA

Row lengths are A059966(n) = number of prime compositions of n.


EXAMPLE

The prime factorization of (1, 1, 4, 2, 3, 1, 5, 5) is: (11423155) = (1)*(1)*(5)*(5)*(4231). The prime factorizations of the initial terms of A000002 are:
(1) = (1)
(12) = (1)*(2)
(122) = (1)*(2)*(2)
(1221) = (1)*(221)
(12211) = (1)*(2211)
(122112) = (1)*(2)*(2211)
(1221121) = (1)*(221121)
(12211212) = (1)*(2)*(221121)
(122112122) = (1)*(2)*(2)*(221121)
(1221121221) = (1)*(221)*(221121)
(12211212212) = (1)*(2)*(221)*(221121)
(122112122122) = (1)*(2)*(2)*(221)*(221121).
Read as a sequence:
(1), (2), (21), (3), (211), (31), (4), (2111), (221), (311), (32), (41), (5).
Read as a triangle:
(1)
(2)
(21), (3)
(211), (31), (4)
(2111), (221), (311), (32), (41), (5).
Read as a sequence of triangles:
1 2 2 1 2 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1
3 3 1 2 2 1 2 2 1 1 2 1 2 1 1
4 3 1 1 3 1 1 1 2 2 1 1 1
3 2 3 1 2 2 2 2 1
4 1 3 2 1 3 1 1 1 1
5 4 1 1 3 1 1 2
4 2 3 1 2 1
5 1 3 2 1 1
6 3 2 2
3 3 1
4 1 1 1
4 1 2
4 2 1
4 3
5 1 1
5 2
6 1
7.


MATHEMATICA

colynQ[q_]:=Array[Union[{RotateRight[q, #], q}]=={RotateRight[q, #], q}&, Length[q]1, 1, And];
lexsort[f_, c_]:=OrderedQ[PadRight[{f, c}]];
Table[Sort[Select[Join@@Permutations/@IntegerPartitions[n], colynQ], lexsort], {n, 5}] (* Gus Wiseman, Nov 15 2019 *)


CROSSREFS

The binary non"co" version is A102659.
A sequence listing all Lyndon compositions is A294859.
Numbers whose binary expansion is coLyndon are A328596.
Numbers whose binary expansion is coLyndon are A275692.
Cf. A211097, A211100, A296372, A296373, A298941, A329131, A329312, A329313, A329314, A329324, A329326.


KEYWORD

nonn,tabf


AUTHOR



STATUS

approved



