login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339304
Irregular triangle read by rows T(n,k) in which row n has length the partition number A000041(n-1) and columns k give the number of divisors function A000005, 1 <= k <= n.
13
1, 2, 2, 1, 3, 2, 1, 2, 2, 2, 1, 1, 4, 3, 2, 2, 2, 1, 1, 2, 2, 3, 2, 2, 2, 2, 1, 1, 1, 1, 4, 4, 2, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 3, 2, 4, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 4, 4, 2, 4, 4, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,2
COMMENTS
T(n,k) is also the number of divisors of A336811(n,k).
Conjecture: the sum of row n equals A138137(n), the total number of parts in the last section of the set of partitions of n.
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..11732 (rows 1..27 of the triangle, flattened)
FORMULA
a(m) = A000005(A336811(m)).
T(n,k) = A000005(A336811(n,k).
EXAMPLE
Triangle begins:
1;
2;
2, 1;
3, 2, 1;
2, 2, 2, 1, 1;
4, 3, 2, 2, 2, 1, 1;
2, 2, 3, 2, 2, 2, 2, 1, 1, 1, 1;
4, 4, 2, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1;
3, 2, 4, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1;
...
MATHEMATICA
A339304row[n_]:=Flatten[Table[ConstantArray[DivisorSigma[0, n-m], PartitionsP[m]-PartitionsP[m-1]], {m, 0, n-1}]]; Array[A339304row, 10] (* Paolo Xausa, Sep 01 2023 *)
CROSSREFS
Number of divisors of A336811.
Row n has length A000041(n-1).
Every column gives A000005.
Row sums give A138137 (conjectured).
Sequence in context: A281013 A190683 A181810 * A237578 A026146 A325519
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Nov 29 2020
STATUS
approved