|
|
A339304
|
|
Irregular triangle read by rows T(n,k) in which row n has length the partition number A000041(n-1) and columns k give the number of divisors function A000005, 1 <= k <= n.
|
|
0
|
|
|
1, 2, 2, 1, 3, 2, 1, 2, 2, 2, 1, 1, 4, 3, 2, 2, 2, 1, 1, 2, 2, 3, 2, 2, 2, 2, 1, 1, 1, 1, 4, 4, 2, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 3, 2, 4, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 4, 4, 2, 4, 4, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
T(n,k) is also the number of divisors of A336811(n,k).
Conjecture: the sum of row n equals A138137(n), the total number of parts in the last section of the set of partitions of n.
|
|
LINKS
|
Table of n, a(n) for n=1..97.
|
|
FORMULA
|
a(m) = A000005(A336811(m)).
T(n,k) = A000005(A336811(n,k).
|
|
EXAMPLE
|
Triangle begins:
1;
2;
2, 1;
3, 2, 1;
2, 2, 2, 1, 1;
4, 3, 2, 2, 2, 1, 1;
2, 2, 3, 2, 2, 2, 2, 1, 1, 1, 1;
4, 4, 2, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1;
3, 2, 4, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1;
...
|
|
CROSSREFS
|
Number of divisors of A336811.
Row n has length A000041(n-1).
Every column gives A000005.
Row sums give A138137 (conjectured).
Cf. A135010, A138121, A138879, A187219.
Sequence in context: A281013 A190683 A181810 * A237578 A026146 A325519
Adjacent sequences: A339301 A339302 A339303 * A339305 A339306 A339307
|
|
KEYWORD
|
nonn,tabf,new
|
|
AUTHOR
|
Omar E. Pol, Nov 29 2020
|
|
STATUS
|
approved
|
|
|
|