OFFSET
1,4
COMMENTS
Linear forests (A339067) are considered up to reversal of the linear order.
T(n,k) is the number of unlabeled trees on n nodes rooted at two indistinguishable nodes at distance k-1 from each other.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
FORMULA
G.f of column k: (r(x)^k + r(x)^(k mod 2)*r(x^2)^floor(k/2))/2 where r(x) is the g.f. of A000081.
EXAMPLE
Triangle read by rows:
1;
1, 1;
2, 1, 1;
4, 3, 2, 1;
9, 6, 6, 2, 1;
20, 16, 15, 8, 3, 1;
48, 37, 41, 22, 12, 3, 1;
115, 96, 106, 69, 38, 15, 4, 1;
286, 239, 284, 194, 124, 52, 20, 4, 1;
719, 622, 750, 564, 377, 189, 77, 24, 5, 1;
...
PROG
(PARI) \\ TreeGf is A000081 as g.f.
TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
ColSeq(n, k)={my(r=TreeGf(max(0, n+1-k))); Vec(r^k + r^(k%2)*subst(r, x, x^2)^(k\2), -n)/2}
M(n, m=n)=Mat(vector(m, k, ColSeq(n, k)~))
{ my(T=M(12)); for(n=1, #T~, print(T[n, 1..n])) }
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Dec 04 2020
STATUS
approved