login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303840
Unlabeled trees with n nodes rooted at 2 indistinguishable roots that are leaves.
2
0, 1, 1, 2, 4, 10, 24, 63, 164, 444, 1204, 3328, 9233, 25865, 72734, 205656, 583320, 1660318, 4737540, 13551165, 38837535, 111512229, 320681604, 923528963, 2663057582, 7688068638, 22218350303, 64272720521, 186091334380, 539237928902, 1563731491958, 4537823968645, 13176960639940, 38286514506439, 111306880581963
OFFSET
1,4
EXAMPLE
a(2)=a(3)=1, because the two roots must be (all) the leaves. a(4)=2 (one pattern from the linear tree, one from the star tree). a(6)=10: 1 pattern from n-Hexane. 2 patterns from 2-Methyl-Pentane. 2 patterns from (2,3)-Bimethyl-Butane. 1 pattern from the star graph. 2 patterns from 3-Methyl-Pentane. 2 patterns from (2,2)-Bimethyl-Butane.
MAPLE
a000081 := [1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381, 634847, 1721159, 4688676, 12826228,
35221832, 97055181, 268282855, 743724984, 2067174645, 5759636510, 16083734329, 45007066269, 126186554308, 354426847597,
997171512998, 2809934352700, 7929819784355, 22409533673568, 63411730258053, 179655930440464, 509588049810620, 1447023384581029,
4113254119923150, 11703780079612453, 33333125878283632] ;
g81 := add( op(i, a000081)*x^i, i=1..nops(a000081) ) ;
g81fin := x ;
g := 0 ;
nmax := nops(a000081) ;
for m from 0 to nmax do
mhalf := floor(m/2) ;
ghalf := g81^mhalf*g81fin ;
gcyc := (ghalf^2+subs(x=x^2, ghalf))/2 ;
if type(m, odd) then
gcyc := gcyc*g81 ;
end if;
g := g+gcyc ;
end do:
taylor(g, x=0, nmax) ;
gfun[seriestolist](%) ;
CROSSREFS
Cf. A303833 (roots need not be leaves), A055290 (cardinality of candidates).
Sequence in context: A138175 A121691 A124499 * A132220 A007874 A294410
KEYWORD
nonn
AUTHOR
R. J. Mathar, May 01 2018
STATUS
approved