login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055290
Triangle of trees with n nodes and k leaves, 2 <= k <= n.
21
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 1, 3, 4, 2, 1, 0, 1, 4, 8, 6, 3, 1, 0, 1, 5, 14, 14, 9, 3, 1, 0, 1, 7, 23, 32, 26, 12, 4, 1, 0, 1, 8, 36, 64, 66, 39, 16, 4, 1, 0, 1, 10, 54, 123, 158, 119, 60, 20, 5, 1, 0, 1, 12, 78, 219, 350, 325, 202, 83, 25, 5, 1, 0
OFFSET
2,12
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 80, Problem 3.9.
FORMULA
G.f.: A(x, y)=(1-x+x*y)*B(x, y)+(1/2)*(B(x^2, y^2)-B(x, y)^2), where B(x, y) is g.f. of A055277.
EXAMPLE
Triangle begins:
n=2: 1
n=3: 1 0
n=4: 1 1 0
n=5: 1 1 1 0
n=6: 1 2 2 1 0
n=7: 1 3 4 2 1 0
n=8: 1 4 8 6 3 1 0
n=9: 1 5 14 14 9 3 1 0
n=10: 1 7 23 32 26 12 4 1 0
n=11: 1 8 36 64 66 39 16 4 1 0
n=12: 1 10 54 123 158 119 60 20 5 1 0
n=13: 1 12 78 219 350 325 202 83 25 5 1 0
PROG
(PARI)
EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i ))-1)}
T(n)={my(u=[y]); for(n=2, n, u=concat([y], EulerMT(u))); my(r=x*Ser(u), v=Vec(r*(1-x+x*y) + (substvec(r, [x, y], [x^2, y^2]) - r^2)/2)); vector(n-1, k, Vecrev(v[1+k]/y^2, k))}
{ my(A=T(10)); for(n=1, #A, print(A[n])) }
CROSSREFS
Row sums give A000055, row sums with weight k give A003228.
The labeled version is A055314.
Central column is A358107.
Left of central column is A359398.
Sequence in context: A194522 A165013 A351995 * A125629 A339160 A355755
KEYWORD
nonn,tabl
AUTHOR
Christian G. Bower, May 09 2000
STATUS
approved