OFFSET
1,2
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..200
V. M. Kharlamov and S. Yu. Orevkov, The number of trees half of whose vertices are leaves and asymptotic enumeration of plane real algebraic curves, arXiv:math/0301245 [math.AG], 2003; J. of Combinatorial Theory, Ser. A, 105 (2004), 127-142.
EXAMPLE
From Gus Wiseman, Nov 27 2022: (Start)
The a(1) = 1 through a(3) = 8 rooted trees:
(o) ((oo)) (((ooo)))
(o(o)) ((o)(oo))
((o(oo)))
((oo(o)))
(o((oo)))
(o(o)(o))
(o(o(o)))
(oo((o)))
(End)
MATHEMATICA
terms = 23;
m = 2 terms;
T[_, _] = 0;
Do[T[x_, z_] = z x - x + x Exp[Sum[Series[1/k T[x^k, z^k], {x, 0, j}, {z, 0, j}], {k, 1, j}]] // Normal, {j, 1, m}];
cc = CoefficientList[#, z]& /@ CoefficientList[T[x, z] , x];
Table[cc[[2n+1, n+1]], {n, 1, terms}] (* Jean-François Alcover, Sep 14 2018 *)
art[n_]:=If[n==1, {{}}, Join@@Table[Select[Tuples[art/@c], OrderedQ], {c, Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[art[n], Count[#, {}, {-2}]==n/2&]], {n, 2, 10, 2}] (* Gus Wiseman, Nov 27 2022 *)
PROG
(PARI) \\ here R is A055277 as vector of polynomials
R(n) = {my(A = O(x)); for(j=1, n, A = x*(y - 1 + exp( sum(i=1, j, 1/i * subst( subst( A + x * O(x^(j\i)), x, x^i), y, y^i) ) ))); Vec(A)};
{my(A=R(2*30)); vector(#A\2, k, polcoeff(A[2*k], k))} \\ Andrew Howroyd, May 21 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Stepan Orevkov, Aug 29 2013
EXTENSIONS
Terms a(20) and beyond from Andrew Howroyd, May 21 2018
STATUS
approved