Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Nov 28 2022 09:59:56
%S 1,2,8,39,214,1268,7949,51901,349703,2415348,17020341,121939535,
%T 885841162,6511874216,48359860685,362343773669,2736184763500,
%U 20805175635077,159174733727167,1224557214545788,9467861087020239,73534456468877012,573484090227222260
%N a(n) is the number of rooted trees with 2n vertices n of whom are leaves.
%H Andrew Howroyd, <a href="/A185650/b185650.txt">Table of n, a(n) for n = 1..200</a>
%H V. M. Kharlamov and S. Yu. Orevkov, <a href="http://arxiv.org/abs/math/0301245">The number of trees half of whose vertices are leaves and asymptotic enumeration of plane real algebraic curves</a>, arXiv:math/0301245 [math.AG], 2003; J. of Combinatorial Theory, Ser. A, 105 (2004), 127-142.
%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%e From _Gus Wiseman_, Nov 27 2022: (Start)
%e The a(1) = 1 through a(3) = 8 rooted trees:
%e (o) ((oo)) (((ooo)))
%e (o(o)) ((o)(oo))
%e ((o(oo)))
%e ((oo(o)))
%e (o((oo)))
%e (o(o)(o))
%e (o(o(o)))
%e (oo((o)))
%e (End)
%t terms = 23;
%t m = 2 terms;
%t T[_, _] = 0;
%t Do[T[x_, z_] = z x - x + x Exp[Sum[Series[1/k T[x^k, z^k], {x, 0, j}, {z, 0, j}], {k, 1, j}]] // Normal, {j, 1, m}];
%t cc = CoefficientList[#, z]& /@ CoefficientList[T[x, z] , x];
%t Table[cc[[2n+1, n+1]], {n, 1, terms}] (* _Jean-François Alcover_, Sep 14 2018 *)
%t art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
%t Table[Length[Select[art[n],Count[#,{},{-2}]==n/2&]],{n,2,10,2}] (* _Gus Wiseman_, Nov 27 2022 *)
%o (PARI) \\ here R is A055277 as vector of polynomials
%o R(n) = {my(A = O(x)); for(j=1, n, A = x*(y - 1 + exp( sum(i=1, j, 1/i * subst( subst( A + x * O(x^(j\i)), x, x^i), y, y^i) ) ))); Vec(A)};
%o {my(A=R(2*30)); vector(#A\2, k, polcoeff(A[2*k],k))} \\ _Andrew Howroyd_, May 21 2018
%Y The ordered version is A000891, ranked by A358579.
%Y This is the central column of A055277.
%Y These trees are ranked by A358578.
%Y For height = internals we have A358587.
%Y Square trees are counted by A358589.
%Y A000081 counts rooted trees, ordered A000108.
%Y A055277 counts rooted trees by nodes and leaves, ordered A001263.
%Y A358575 counts rooted trees by nodes and internals, ordered A090181.
%Y Cf. A034781, A109129, A358580, A358581-A358584, A358591.
%K nonn
%O 1,2
%A _Stepan Orevkov_, Aug 29 2013
%E Terms a(20) and beyond from _Andrew Howroyd_, May 21 2018