login
A185649
Expansion of g.f. 1/ (1-x^1*(1-x^(m+1))/ (1-x^2*(1-x^(m+2))/ (1- ... ))) for m=10.
2
1, 1, 1, 2, 3, 5, 9, 15, 26, 45, 78, 135, 233, 404, 700, 1213, 2103, 3645, 6319, 10955, 18992, 32927, 57085, 98970, 171588, 297489, 515771, 894217, 1550350, 2687923, 4660196, 8079634, 14008102, 24286615, 42107043, 73003306, 126569874, 219441205, 380457391
OFFSET
0,4
LINKS
Paul D. Hanna et al., Formula Needed for a Family of Continued Fractions and follow-up messages on the SeqFan list, Jul 28 2013
MATHEMATICA
nMax = 39; col[m_ /; 0 <= m <= nMax] := 1/(1 + ContinuedFractionK[-x^k (1 - x^(m + k)), 1, {k, 1, Ceiling[nMax/2]}]) + O[x]^(2 nMax) // CoefficientList[#, x]&; A185649 = col[10][[1 ;; nMax]] (* Jean-François Alcover, Nov 03 2016 *)
CROSSREFS
Column m=10 of A185646.
Sequence in context: A239909 A185648 A228645 * A005169 A338192 A129852
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 29 2013
STATUS
approved