login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129852
Nondescending wiggly sums: number of sums adding to n in which terms alternately do not decrease and do not increase.
29
1, 1, 2, 3, 5, 9, 15, 26, 45, 79, 135, 236, 408, 710, 1230, 2137, 3705, 6436, 11165, 19384, 33637, 58391, 101336, 175896, 305284, 529884, 919683, 1596277, 2770576, 4808811, 8346446, 14486644, 25143896, 43641363, 75746646, 131470683, 228188723, 396058740, 687424365, 1193136983, 2070883422
OFFSET
0,3
LINKS
EXAMPLE
From Joerg Arndt, May 21 2013: (Start)
The a(6)=15 such compositions are
01: [ 1 1 1 1 1 1 ]
02: [ 1 1 1 2 1 ]
03: [ 1 1 1 3 ]
04: [ 1 2 1 1 1 ]
05: [ 1 2 1 2 ]
06: [ 1 3 1 1 ]
07: [ 1 3 2 ]
08: [ 1 4 1 ]
09: [ 1 5 ]
10: [ 2 2 1 1 ]
11: [ 2 2 2 ]
12: [ 2 3 1 ]
13: [ 2 4 ]
14: [ 3 3 ]
15: [ 6 ]
(End)
MAPLE
A129852rec := proc(part, n) local asum, a, k ; asum := add(i, i=part) ; if asum > n then RETURN(0) ; elif asum = n then RETURN(1) ; else a := 0 ; if nops(part) mod 2 = 1 then for k from op(-1, part) to n-asum do a := a+A129852rec([op(part), k], n) ; od: else for k from 1 to min(op(-1, part), n-asum) do a := a+A129852rec([op(part), k], n) ; od: fi ; RETURN(a) ; fi ; end: A129852 := proc(n) local a, a1 ; a := 0 ; for a1 from 1 to n do a := a+A129852rec([a1], n) ; od: RETURN(a) ; end: seq(A129852(n), n=1..20) ; # R. J. Mathar, Oct 31 2007
# second Maple program:
b:= proc(n, l, t) option remember; `if`(n=0, 1, add(
b(n-j, j, not t), j=`if`(t, l..n, 1..min(n, l))))
end:
a:= n-> b(n$2, false):
seq(a(n), n=0..40); # Alois P. Heinz, May 23 2023
MATHEMATICA
b[n_, l_, t_] := b[n, l, t] = If[n == 0, 1, Sum[b[n-j, j, !t], {j, If[t, Range[l, n], Range[Min[n, l]]]}]];
a[n_] := b[n, n, False];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, May 23 2023, after Alois P. Heinz *)
CROSSREFS
Cf. A129853.
Sequence in context: A185649 A005169 A338192 * A367666 A065954 A067847
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, May 22 2007
EXTENSIONS
More terms from R. J. Mathar, Oct 31 2007
More terms from Joerg Arndt, May 21 2013
a(0)=1 prepended by Alois P. Heinz, May 23 2023
STATUS
approved