login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129855
A symmetrical triangle of coefficients based on A000217: a(n) = Binomial[n + 2, 2]; t(n,m)=a(n - m + 1)*a(m + 1).
0
9, 18, 18, 30, 36, 30, 45, 60, 60, 45, 63, 90, 100, 90, 63, 84, 126, 150, 150, 126, 84, 108, 168, 210, 225, 210, 168, 108, 135, 216, 280, 315, 315, 280, 216, 135, 165, 270, 360, 420, 441, 420, 360, 270, 165, 198, 330, 450, 540, 588, 588, 540, 450, 330, 198, 234
OFFSET
1,1
COMMENTS
Row sums are:
{9, 36, 96, 210, 406, 720, 1197, 1892, 2871, 4212, 6006}.
REFERENCES
G. E. Andrews, Number Theory, 1971, Dover Publications New York, p 44.
FORMULA
a(n) = Binomial[n + 2, 2]; t(n,m)=a(n - m + 1)*a(m + 1).
EXAMPLE
{9},
{18, 18},
{30, 36, 30},
{45, 60, 60, 45},
{63, 90, 100, 90, 63},
{84, 126, 150, 150, 126, 84},
{108, 168, 210, 225, 210, 168, 108},
{135, 216, 280, 315, 315, 280, 216, 135},
{165, 270, 360, 420, 441, 420, 360, 270, 165},
{198, 330, 450, 540, 588, 588, 540, 450, 330, 198},
{234, 396, 550, 675, 756, 784, 756, 675, 550, 396, 234}
MATHEMATICA
Clear[a, n, m, t] (*A000217*) a[0] = 1; a[1] = 3; a[n_] := a[n] = Binomial[n + 2, 2]; Table[a[n], {n, 0, 30}]; t[n_, m_] = a[n - m + 1]*a[m + 1]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]
CROSSREFS
Cf. A000217.
Sequence in context: A046125 A040072 A034728 * A250769 A158908 A202188
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved