login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A symmetrical triangle of coefficients based on A000217: a(n) = Binomial[n + 2, 2]; t(n,m)=a(n - m + 1)*a(m + 1).
0

%I #3 Oct 12 2012 14:54:49

%S 9,18,18,30,36,30,45,60,60,45,63,90,100,90,63,84,126,150,150,126,84,

%T 108,168,210,225,210,168,108,135,216,280,315,315,280,216,135,165,270,

%U 360,420,441,420,360,270,165,198,330,450,540,588,588,540,450,330,198,234

%N A symmetrical triangle of coefficients based on A000217: a(n) = Binomial[n + 2, 2]; t(n,m)=a(n - m + 1)*a(m + 1).

%C Row sums are:

%C {9, 36, 96, 210, 406, 720, 1197, 1892, 2871, 4212, 6006}.

%D G. E. Andrews, Number Theory, 1971, Dover Publications New York, p 44.

%F a(n) = Binomial[n + 2, 2]; t(n,m)=a(n - m + 1)*a(m + 1).

%e {9},

%e {18, 18},

%e {30, 36, 30},

%e {45, 60, 60, 45},

%e {63, 90, 100, 90, 63},

%e {84, 126, 150, 150, 126, 84},

%e {108, 168, 210, 225, 210, 168, 108},

%e {135, 216, 280, 315, 315, 280, 216, 135},

%e {165, 270, 360, 420, 441, 420, 360, 270, 165},

%e {198, 330, 450, 540, 588, 588, 540, 450, 330, 198},

%e {234, 396, 550, 675, 756, 784, 756, 675, 550, 396, 234}

%t Clear[a, n, m, t] (*A000217*) a[0] = 1; a[1] = 3; a[n_] := a[n] = Binomial[n + 2, 2]; Table[a[n], {n, 0, 30}]; t[n_, m_] = a[n - m + 1]*a[m + 1]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]

%Y Cf. A000217.

%K nonn,tabl

%O 1,1

%A _Roger L. Bagula_ and _Gary W. Adamson_, Aug 25 2008