login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129858
A triangle of coefficients based on A000217: a(n)=Binomial[n+2,2]; t(n,m)=a(n - m + 1)*a(m + 1) - a((n - m + 1)*(m + 1)).
0
6, 12, 12, 20, 21, 20, 30, 32, 32, 30, 42, 45, 45, 45, 42, 56, 60, 59, 59, 60, 56, 72, 77, 74, 72, 74, 77, 72, 90, 96, 90, 84, 84, 90, 96, 90, 110, 117, 107, 95, 90, 95, 107, 117, 110, 132, 140, 125, 105, 92, 92, 105, 125, 140, 132, 156, 165, 144, 114, 90, 81, 90, 114, 144
OFFSET
1,1
COMMENTS
Row sums are:
{6, 24, 61, 124, 219, 350, 518, 720, 948, 1188, 1419}.
REFERENCES
G. E. Andrews, Number Theory, 1971, Dover Publications New York, p 44,p 85.
FORMULA
a(n)=Binomial[n+2,2]; t(n,m)=a(n - m + 1)*a(m + 1) - a((n - m + 1)*(m + 1)).
EXAMPLE
{6},
{12, 12},
{20, 21, 20},
{30, 32, 32, 30},
{42, 45, 45, 45, 42},
{56, 60, 59, 59, 60, 56},
{72, 77, 74, 72, 74, 77, 72},
{90, 96, 90, 84, 84, 90, 96, 90},
{110, 117, 107, 95, 90, 95, 107, 117, 110},
{132, 140, 125, 105, 92, 92, 105, 125, 140, 132},
{156, 165, 144, 114, 90, 81, 90, 114, 144, 165, 156}
MATHEMATICA
Clear[a, n, m, t] (*A000217*) a[0] = 1; a[1] = 3; a[n_] := a[n] = Binomial[n + 2, 2]; Table[a[n], {n, 0, 30}]; t[n_, m_] = FullSimplify[a[n - m + 1]*a[m + 1] - a[(n - m + 1)*(m + 1)]]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]
CROSSREFS
Cf. A000217.
Sequence in context: A315581 A315582 A315583 * A061928 A315584 A315585
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved