login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061928
Array T(n,m) = 1/beta(n+1,m+1) read by antidiagonals.
6
6, 12, 12, 20, 30, 20, 30, 60, 60, 30, 42, 105, 140, 105, 42, 56, 168, 280, 280, 168, 56, 72, 252, 504, 630, 504, 252, 72, 90, 360, 840, 1260, 1260, 840, 360, 90, 110, 495, 1320, 2310, 2772, 2310, 1320, 495, 110, 132, 660, 1980, 3960, 5544, 5544, 3960
OFFSET
1,1
COMMENTS
beta(n+1,m+1) = Integral_{x=0..1} x^n * (1-x)^m dx for real n, m.
REFERENCES
G. Boole, A Treatise On The Calculus of Finite Differences, Dover, 1960, p. 26.
FORMULA
beta(n+1, m+1) = gamma(n+1)*gamma(m+1)/gamma(n+m+2) = n!*m!/(n+m+1)!.
EXAMPLE
Antidiagonals:
6,
12, 12,
20, 30, 20,
30, 60, 60, 30,
...
Array:
6 12 20 30 42
12 30 60 105 168
20 60 140 280 504
30 105 280 630 1260
42 168 504 1260 2772
MATHEMATICA
t[n_, m_] := 1/Beta[n+1, m+1]; Take[ Flatten[ Table[ t[n+1-m, m], {n, 1, 10}, {m, 1, n}]], 52] (* Jean-François Alcover, Oct 11 2011 *)
PROG
(PARI) A(i, j)=if(i<1||j<1, 0, 1/subst(intformal(x^i*(1-x)^j), x, 1)) /* Michael Somos, Feb 05 2004 */
(PARI) A(i, j)=if(i<1||j<1, 0, 1/sum(k=0, i, (-1)^k*binomial(i, k)/(j+1+k))) /* Michael Somos, Feb 05 2004 */
(Python)
from sympy import factorial as f
def T(n, m): return f(n + m + 1)/(f(n)*f(m))
for n in range(1, 11): print([T(m, n - m + 1) for m in range(1, n + 1)]) # Indranil Ghosh, Apr 29 2017
CROSSREFS
Rows: 1/b(n, 2): A002378, 1/b(n, 3): A027480, 1/b(n, 4): A033488. Diagonals: 1/b(n, n): A002457, 1/b(n, n+1) A005430, 1/b(n, n+2): A000917.
T(i, j)=A003506(i+1, j+1).
Sequence in context: A315582 A315583 A129858 * A315584 A315585 A256257
KEYWORD
nonn,tabl,easy,nice
AUTHOR
Frank Ellermann, May 22 2001
STATUS
approved