OFFSET
1,1
COMMENTS
beta(n+1,m+1) = Integral_{x=0..1} x^n * (1-x)^m dx for real n, m.
REFERENCES
G. Boole, A Treatise On The Calculus of Finite Differences, Dover, 1960, p. 26.
FORMULA
beta(n+1, m+1) = gamma(n+1)*gamma(m+1)/gamma(n+m+2) = n!*m!/(n+m+1)!.
EXAMPLE
Antidiagonals:
6,
12, 12,
20, 30, 20,
30, 60, 60, 30,
...
Array:
6 12 20 30 42
12 30 60 105 168
20 60 140 280 504
30 105 280 630 1260
42 168 504 1260 2772
MATHEMATICA
t[n_, m_] := 1/Beta[n+1, m+1]; Take[ Flatten[ Table[ t[n+1-m, m], {n, 1, 10}, {m, 1, n}]], 52] (* Jean-François Alcover, Oct 11 2011 *)
PROG
(PARI) A(i, j)=if(i<1||j<1, 0, 1/subst(intformal(x^i*(1-x)^j), x, 1)) /* Michael Somos, Feb 05 2004 */
(PARI) A(i, j)=if(i<1||j<1, 0, 1/sum(k=0, i, (-1)^k*binomial(i, k)/(j+1+k))) /* Michael Somos, Feb 05 2004 */
(Python)
from sympy import factorial as f
def T(n, m): return f(n + m + 1)/(f(n)*f(m))
for n in range(1, 11): print([T(m, n - m + 1) for m in range(1, n + 1)]) # Indranil Ghosh, Apr 29 2017
CROSSREFS
KEYWORD
AUTHOR
Frank Ellermann, May 22 2001
STATUS
approved