login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000917
a(n) = (2n+3)!/(n!*(n+2)!).
9
3, 20, 105, 504, 2310, 10296, 45045, 194480, 831402, 3527160, 14872858, 62403600, 260757900, 1085822640, 4508102925, 18668849760, 77138650050, 318107374200, 1309542023790, 5382578744400, 22093039119060, 90567738003600, 370847442355650, 1516927277253024
OFFSET
0,1
COMMENTS
G.f.: c(x)*(4-c(x))/(1-4*x)^(3/2), c(x) = g.f. for Catalan numbers A000108 (agrees with Hansen, 1975, p. 99, (5.27.9)). Convolution of A038679 with A000984 (central binomial coefficients); also convolution of A038665 with A000302 (powers of 4). - Wolfdieter Lang, Dec 11 1999
Appears as diagonal in A003506. - Zerinvary Lajos, Apr 12 2006
a(n) is the number of double rises in all Grand Dyck paths of semilength n+2. Example: a(0)=3 because in the 6 (=A000984(2)) Grand Dyck paths of semilength 2, namely udud, (uu)dd, uddu, d(uu)d, dudu, dd(uu), we have a total of 3 uu's (shown between parentheses). - Emeric Deutsch, Nov 29 2008
REFERENCES
Eldon R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 99, (5.27.9).
LINKS
Jian Zhou, On Some Mathematics Related to the Interpolating Statistics, arXiv:2108.10514 [math-ph], 2021.
FORMULA
a(n) = (n+1)*binomial(2*n+3, n+1) = (n+1)*A001700(n+1). - Vincenzo Librandi, Jun 01 2016
a(n) = (2*n+3)*A001791(n+1). - R. J. Mathar, Nov 09 2021
D-finite with recurrence +(n+2)*a(n) +10*(-n-1)*a(n-1) +12*(2*n+1)*a(n-2)=0. - R. J. Mathar, Nov 09 2021
D-finite with recurrence n*(n+2)*a(n) -2*(2*n+3)*(n+1)*a(n-1)=0. - R. J. Mathar, Nov 09 2021
From Amiram Eldar, Jan 24 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 - Pi/(3*sqrt(3)) = 1 - A073010.
Sum_{n>=0} (-1)^n/a(n) = 6*log(phi)/sqrt(5) - 1, where phi is the golden ratio (A001622). (End)
MAPLE
a := proc(n) (n+1)*binomial(2*n+3, n+2) end: seq(a(n), n=0..23); # Zerinvary Lajos, Nov 26 2006
seq((n+1)*binomial(2*n+4, n+2)/2, n=0..23); # Zerinvary Lajos, Feb 28 2007
MATHEMATICA
Table[(2*n + 3)!/(n!*(n + 2)!), {n, 0, 25}] (* T. D. Noe, Jun 20 2012 *)
PROG
(Magma) [(n+1)*Binomial(2*n+3, n+1): n in [0..25]]; // Vincenzo Librandi, Jun 01 2016
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved