login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000919
a(n) = 4^n - C(4,3)*3^n + C(4,2)*2^n - C(4,1).
(Formerly M5151 N2235)
17
0, 0, 0, 24, 240, 1560, 8400, 40824, 186480, 818520, 3498000, 14676024, 60780720, 249401880, 1016542800, 4123173624, 16664094960, 67171367640, 270232006800, 1085570781624, 4356217681200, 17466686971800, 69992221794000, 280345359228024, 1122510953731440
OFFSET
1,4
COMMENTS
Differences of 0: 4!*S(n,4).
Number of surjections from an n-element set onto a four-element set. - David Wasserman, Jun 06 2007
Number of rows of n colors using exactly four colors. For n=4, the 24 rows are the 24 permutations of ABCD. - Robert A. Russell, Sep 25 2018
REFERENCES
H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 212.
K. S. Immink, Coding Schemes for Multi-Level Channels that are Intrinsically Resistant Against Unknown Gain and/or Offset Using Reference Symbols, http://www.exp-math.uni-essen.de/~immink/pdf/jsac13.pdf, 2013. [This link no longer works, but please do not delete this reference, for historical reasons. Michel Marcus has suggested that the Immink link below points to the published version of the original reference, and I agree. - N. J. A. Sloane, May 29 2023]
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 33.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
J. F. Steffensen, Interpolation, 2nd ed., Chelsea, NY, 1950, see p. 54.
LINKS
P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260.
P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260. [Annotated scanned copy]
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911, p. 31.
A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911. [Annotated scans of pages 30-33 only]
FORMULA
G.f.: 24*x^3/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)).
a(n) = 4^n - binomial(4,3)*3^n + binomial(4,2)*2^n - binomial(4,1) = 24*A000453(n). - David Wasserman, Jun 06 2007
E.g.f.: (exp(x)-1)^4. - Geoffrey Critzer, Feb 11 2009
For n >= 4: a(n+1) = 4*a(n) + 4*(3^n - 3*2^n + 3) = 4*a(n) + 4*A001117(n). - Geoffrey Critzer, Feb 27 2009
a(n) = k!*S2(n,k), where k=4 is the number of colors and S2 is the Stirling subset number. - Robert A. Russell, Sep 25 2018
MAPLE
with (combstruct):ZL:=[S, {S=Sequence(U, card=r), U=Set(Z, card>=1)}, labeled]: seq(count(subs(r=4, ZL), size=m), m=1..25); # Zerinvary Lajos, Mar 09 2007
A000919:=24/(z-1)/(3*z-1)/(2*z-1)/(4*z-1); # Simon Plouffe in his 1992 dissertation
MATHEMATICA
nn = 25; CoefficientList[Series[24 x^3/((1 - x) (1 - 2 x) (1 - 3 x) (1 - 4 x)), {x, 0, nn}], x] (* T. D. Noe, Jun 20 2012 *)
k=4; Table[k!StirlingS2[n, k], {n, 1, 30}] (* Robert A. Russell, Sep 25 2018 *)
PROG
(PARI) a(n) = 4!*stirling(n, 4, 2); \\ Altug Alkan, Sep 25 2018
CROSSREFS
Column 4 of A019538.
Sequence in context: A253285 A052796 A056269 * A353665 A353775 A268966
KEYWORD
nonn,easy
STATUS
approved