OFFSET
0,5
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..424
FORMULA
G.f.: Sum_{k>=0} (4*k)! * x^(4*k)/Product_{j=1..4*k} (1 - j * x).
a(0) = 1; a(n) = 24 * Sum_{k=1..n} binomial(n,k) * Stirling2(k,4) * a(n-k).
a(n) = Sum_{k=0..floor(n/4)} (4*k)! * Stirling2(n,4*k).
a(n) ~ n! / (8 * log(2)^(n+1)). - Vaclav Kotesovec, May 08 2022
MATHEMATICA
With[{nn=30}, CoefficientList[Series[1/(1-(Exp[x]-1)^4), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Apr 05 2023 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(exp(x)-1)^4)))
(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (4*k)!*x^(4*k)/prod(j=1, 4*k, 1-j*x)))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=24*sum(j=1, i, binomial(i, j)*stirling(j, 4, 2)*v[i-j+1])); v;
(PARI) a(n) = sum(k=0, n\4, (4*k)!*stirling(n, 4*k, 2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 07 2022
STATUS
approved